Potential pharmacological candidates Transmembrane protease, serine 2 inhibitors 2019-ncov treatment.

Authors

  • Alfredo Montes 1Grupo GINUMED. Corporación Universitaria Rafael Núñez, Facultad Ciencias de la Salud, Programa de Medicina, Cartagena, Colombia. 2Grupo de Investigación Microbiología Clínica y Ambiental, Universidad de Cartagena, Facultad de Ciencias Exactas y Naturales, Programa de Biología, Cartagena, Colombia.
  • Snaider Montes-Ucros Estudiante Programa de Medicina, Corporación Universitaria Rafael Núñez, Cartagena, Colombia. Ciencias Básicas Médicas, Asignatura Microbiología.
  • Eduardo Arrieta Estudiante Programa de Medicina, Corporación Universitaria Rafael Núñez, Cartagena, Colombia. Ciencias Básicas Médicas, Asignatura Microbiología.

Keywords:

TMPRSS2, ACE II, COVID-19, 2019-nCoV, Coronaviridae.
Agencies: Corporation University Rafael Núñez

Abstract

Introduction: Coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 virus with characteristic of infecting the respiratory tract, causing severe acute respiratory syndrome. The virus uses the ACE II receptors and the transmembrane protein TMPRSS2 initial step to enter the host cell, this contribution described different types of drug, to perform its inhibition in initial step adhesion.

Methodology: Non-systematic review of articles with the help of preset keywords

Results: In this review we will present drugs that inhibitors of this type of receptor therefore these drugs could be considered potential candidates to mitigate the spread of SARS-CoV-2.

 

Downloads

Author Biography

Alfredo Montes, 1Grupo GINUMED. Corporación Universitaria Rafael Núñez, Facultad Ciencias de la Salud, Programa de Medicina, Cartagena, Colombia. 2Grupo de Investigación Microbiología Clínica y Ambiental, Universidad de Cartagena, Facultad de Ciencias Exactas y Naturales, Programa de Biología, Cartagena, Colombia.

Docente Investigador de la Corporación Universitaria Rafael Núñez, Facultad Ciencias de la Salud, Programa de Medicina, Cartagena, Colombia.

Investigador del Grupo de Investigación Microbiología Clínica y Ambiental, Universidad de Cartagena.

References

Ruiz-Bravo A, Jimenez-Varela M. SARS-CoV-2 y pandemia de síndrome respiratorio agudo (COVID-19). Ars Pharm. 2020; 61(2), 63-79. doi:10.30827/ars.v61i2.15177.

Montes A, Coronell W, Baldiris R. Can house flies mechanically carry and/or transport sars-cov-2? Int J Clin Virol. 2020; 4: 076-078. doi: 10.29328/journal.ijcv.1001019.

Corman V, Lienau J, Witzenrath M. Coronaviruses as the cause of respiratory infections. Der Internist. 2019; 60(11): 1136-1145. doi: 10.1007/s00108-019-00671-5.

WHO. Coronavirus diastase (COIVD-2019) situation reports [Internet] 2020 Available in: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/.

Liu J, Liao X, Qian S, Yuan J, Wang F, Liu Y, Zhang Z. Community Transmission of Severe Acute Respiratory Syndrome Coronavirus 2. Emerging infectious diseases Shenzhen, China. Emerg Infect Dis. 2020; 26(6). doi:10.3201/eid2606.200239.

Ong S, Tan Y, Chia P, Lee T, Ng O, Wong M, Marimuthu K. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA. 2020;323(16):1610–1612. doi:10.1001/jama.2020.322.7

Xiao K, Zhai J, Feng Y, Zhou N, Zhang X, Zou J, Zhang Z. Isolation and characterization of 2019-nCoV-like coronavirus from Malayan pangolins. BioRxiv. 2020; 02.17.951335; doi:10.1101/2020.02.17.951335.

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Müller M. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181, 271–280. doi:10.1016/j.cell.2020.02.052

Ueda M, Uchimura K, Narita Y, Miyasato Y, Mizumoto T, Morinaga J, Shiraishi N. The serine protease inhibitor camostat mesilate attenuates the progression of chronic kidney disease through its antioxidant effects. Nephron 2015; 129:223-232. doi:10.1159/000375308.

Bittmann S, Luchter E, Weissenstein A, Villalon G, Moschüring-Alieva E. TMPRSS2-Inhibitors Play a Role in Cell Entry Mechanism of COVID-19: An insight into Camostat and Nafamostat. J Regen Biol Med. 2020; 2(2): 1-3. doi:10.37191/Mapsci-2582-385X-2(2)-022

Yamamoto M, Kiso M, Sakai-Tagawa Y, Iwatsuki-Horimoto K, Imai M, Takeda M, Matsuda Z. The anticoagulant nafamostat potently inhibits SARS-CoV-2 infection in vitro: an existing drug with multiple possible therapeutic effects. bioRxiv. 2020.04.22.054981; doi:10.1101/2020.04.22.054981

Lucas J, Heinlein C, Kim T, Hernandez S, Malik M, True L, Clegg N. The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discov. 2014; 4(11): 1310-1325. doi: 10.1158/2159-8290.CD-13-1010.

Shen L, Mao H, Wu Y, Tanaka Y, Zhang W. TMPRSS2: A potential target for treatment of influenza virus and coronavirus infections. Biochimie. 2017;142:1-10. doi:10.1016/j.biochi.2017.07.016

Böttcher-Friebertshäuser E, Stein D, Klenk H, Garten W. Inhibition of influenza virus infection in human airway cell cultures by an antisense peptide-conjugated morpholino oligomer targeting the hemagglutinin-activating protease TMPRSS2. J Virol. 2011; 85(4): 1554-1562. doi: 10.1128/JVI.01294-10

Limburg H, Harbig A, Bestle D, Stein D, Moulton H, Jaeger J, Koczulla A. TMPRSS2 is the major activating protease of influenza A virus in primary human airway cells and influenza B virus in human type II pneumocytes. J Virol. 2019; 93(21): e00649-19. doi:10.1128/JVI.00649-19.

Bestle D, Heindl M, Limburg H, Pilgram O, Moulton H, Stein D, Becker S. TMPRSS2 and furin are both essential for proteolytic activation and spread of SARS-CoV-2 in human airway epithelial cells and provide promising drug targets. bioRxiv. 2020.04.15.042085; doi:10.1101/2020.04.15.042085

Zuñiga J, Cortes A. The role of additive manufacturing and antimicrobial polymers in the COVID-19 pandemic. Expert Rev Med Devices. 2020.17:6, 477-481, doi: 10.1080/17434440.2020.1756771

Nickols N, Dervan P. Suppression of androgen receptor-mediated gene expression by a sequence-specific DNA-binding polyamide. PNAS. 2007; 104(25): 10418-10423. doi: 10.1073/pnas.0704217104.

Puc J, Kozbial P, Li W, Tan Y, Liu Z, Suter T, Ohgi K, Zhang J, Aggarwal A. Rosenfeld M.G. Ligand-dependent enhancer activation regulated by topoisomerase-I activity. Cell. 2015; 160:367–380.doi: 10.1016/j.cell.2014.12.023

Corponi F, Fabbri C, Bitter I, Montgomery S, Vieta E, Kasper S, Pallanti S, Serretti A. Novel antipsychotics specificity profile: A clinically oriented review of lurasidone, brexpiprazole, cariprazine and lumateperone. Eur Neuropsypharm. 2019; 29(9): 971–985. doi:10.1016/j.euroneuro.2019.06.008

Elmezayen A, Al-Obaidi A, Şahin A. T, Yelekçi K. Drug repurposing for coronavirus (COVID-19): in silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. J Biomol Struct Dyn 2020; 1-12.doi: 10.1080/07391102.2020.1758791

Alan C, Real J. P, Palma S. D. High Dose Of Ascorbic Acid Used In Sars Covid-19 Treatment: Scientific And Clinical Support For Its Therapeutic Implementation. Ars Pharm. 2020. 61(2), 145-148.doi: 10.30827/ars.v61i2.15164.

Published

2020-12-20

How to Cite

1.
Montes A, Montes-Ucros S, Arrieta E. Potential pharmacological candidates Transmembrane protease, serine 2 inhibitors 2019-ncov treatment. Ars Pharm [Internet]. 2020 Dec. 20 [cited 2025 May 18];61(4):253-7. Available from: https://revistaseug.ugr.es/index.php/ars/article/view/15688

Issue

Section

Clinical Notes