The radioprotective effect of a wheat germ diet on rat myocardial tissue exposed to X-rays

Authors

  • María Esther Bayona Caballero Laboratorio ACFarma Universidad Nacional de Trujillo. Facultad de Farmacia y Bioquímica
  • Judith Alayo Zavaleta RAFINT Comprehensive Regulatory Solutions for Latin America Universidad Nacional de Trujillo. Facultad de Farmacia y Bioquímica
  • César Leopoldo Lombardi Pérez Universidad Privada Antenor Orrego
  • Carmen Luisa Marín Tello Universidad Nacional de Trujillo

DOI:

https://doi.org/10.30827/ars.v60i4.10226

Keywords:

Triticum, X-Rays, heart

Abstract

Introduction: To determine whether a diet of wheat (Triticum aestivum) germ has a radioprotective effect on albino rat (Rattus rattus var. Albinus) myocardial tissue.

Method: Rats between 200 and 250 g were divided into 4 groups of 6 each: Two groups were fed either a wheat diet or regular diet 16 days before and after a single exposure to 18 mSv of X-rays. The other two groups were fed the same diets but not exposed to X-rays. The animals were sacrificed, and heart tissue was submitted to histopathological study.

Results: Rats fed a standard diet and exposed to X-rays presented marked hyperemia of blood vessels, necrosis, presence of connective tissue fibrocytes, loss of muscle architecture and radial arrangement. Exposed rats fed a wheat diet presented with only light necrosis and the presence of fibrocytes. Rats not exposed to X-rays had healthy myocardia.

Conclusions: Wheat germ diet may have a radioprotective effect on rat myocardium.

Downloads

Download data is not yet available.

Author Biographies

María Esther Bayona Caballero, Laboratorio ACFarma Universidad Nacional de Trujillo. Facultad de Farmacia y Bioquímica

Technical Direction Assistant of Laboratorio ACFarma

Judith Alayo Zavaleta, RAFINT Comprehensive Regulatory Solutions for Latin America Universidad Nacional de Trujillo. Facultad de Farmacia y Bioquímica

Regulatory affairs specialist of RAFINT Comprehensive Regulatory Solutions for Latin America

César Leopoldo Lombardi Pérez, Universidad Privada Antenor Orrego

Professor of Pathology . Escuela de Medicina Veterinaria. Universidad Privada Antenor Orrego

Carmen Luisa Marín Tello, Universidad Nacional de Trujillo

Professor of Human Physiology and Physiopathology . Facultad de Farmacia y Bioquìmica . Universidad Nacional de Trujillo

References

Soffia P, Ubeda C, Miranda P, Rodríguez JL. Radioprotección al día en radiología diagnóstica: Conclusiones de la Conferencia Iberoamericana de Protección Radiológica en Medicina (CIPRaM) 2016. Rev Chil Radiol. 2017;23(1):15–19.

World Health Organization (WHO). Department of Public Health, Environmental and Social Determinants of Health (PHE). Comunicación sobre los riesgos de la Radiación en la imagenología Pediátrica. 2016. Available from: http://www.who.int/ionizing_radiation/pub_meet/summary-es.pdf?ua=1

Taylor CW, McGale P, Povall JM, Thomas E, Kumar S, Dodwell D, et al. Estimating Cardiac Exposure From Breast Cancer Radiotherapy in Clinical Practice. Int J Radiat Oncol. 2009;73(4):1061–1068. doi: 10.1016/j.ijrobp.2008.05.066

Aune D, Keum NN, Giovannucci E, Fadnes LT, Boffetta P, Greenwood DC, et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMC Med. 2016;14(1):1–14. doi: 10.1136/bmj.i2716

Valenzuela R, Tapia G, González M VA. Omega-3 fatty acids (EPA and DHA ) and its applications in diverse clinical situation. Rev Chil Nutr. 2011;38:356–367.

Carrero J, Martín-Bautista E, Baró L, Fonollá J, Jiménez J, Boza J LE. Cardiovascular effects of omega-3-fatty acids and alternatives to increase their intake. Nutr Hosp. 2005;20(1):63–69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15762422

Hoyos M, Flores P. Tipos de Radiación, Aplicaciones, Beneficios y Riesgos. Rev. Act. Clin. Med [ediciòn electrónica]. 2013 [cited 2019 Ago 04]. Available from: http://www.revistasbolivianas.org.bo/scielo.php?script=sci_arttext&pid=S2304-37682013001000003&lng=es.

Almén A, Lundh C, Bath M. Challenges assessing radiation risk in image-guided treatments - Implications on optimisation of radiological protection. Journal of Radiological Protection. 2018;38(3):1064–1076. doi: 10.1088/1361-6498/aacc83

Fernandez-Gil B, Abdel Moneim AE, Ortiz F, Shen YQ, Soto-Mercado V, Mendivil-Perez M, et al. Melatonin protects rats from radiotherapyinduced small intestine toxicity. PLoS One. 2017;12(4):1–21. doi: 10.1371/journal.pone.0174474

Fuentes L, Felipe S, Valencia V. Efectos biológicos de los Rayo-X en la práctica de Estomatología. Rev Habanera Ciencias Médicas.2015;14(3):337–347.

Pérez-Ruíz JM. Impact of nutritional assessment in patients with heart failure. Nutr Hosp. 2017;34(6):1265–1266. doi: 10.20960/nh.1677

Marín-Tello C, Guevara-Vásquez AM, Mejía D, Sánchez C, Lombardi-Pérez C. Efecto de Triticum aestivum (trigo) sobre la arquitectura de los hepatocitos de Rattus rattus var. albinus irradiados con Rayos X. Pharmaciencia. 2013;(1):16–23.

Rosero-Salazar D, Ortiz-Salazar M S-ML. Miocardiocitos conducentes ventriculares. Univ y Salud. 2015;17(2):262–70.

Ramírez ME, Rojas M. La necrosis, un mecanismo regulado de muerte celular. Iatreia. 2010;23(2):166–177.

Bialostozky D, Rodríguez-Diez G ZC. Apoptosis detection in cardiovascular diseases through nuclear cardiology spect images. Arch Cardiol Mex. 2008;78(2):217–28.

Fuchs-Tarlovsky V, Bejarano-Rosales M, Gutiérrez-Salmeán G, Casillas Mª, López-Alvarenga J, Ceballos-Reyes G. M. Effect of antioxidant supplementation over oxidative stress and quality of life in cervical cancer. Nutr. Hosp. 2011;26(4):819-826. doi: 10.3305/nh.2011.26.4.4894

Abilés J, Moreno-Torres R, Moratalla G, Castaño J, Abúd RP, Mudarra A, et al. Effects of supply with glutamine on antioxidant system and lipid peroxidation in patients with parenteral nutrition. Nutr. Hosp. 2008;23(4):332-339.

Fischer N, Seo E-J, Efferth T. Prevention from radiation damage by natural products. Phytomedicine. 2018;47:192–200. doi: 10.1016/j.phymed.2017.11.005

Kim W, Kang J, Lee S, Youn B. Effects of traditional oriental medicines as anti-cytotoxic agents in radiotherapy. Oncol Lett. 2017;13(6):4593–4601. doi: 10.3892/ol.2017.6042

González-Pumariega M, Fuentes-León F, Vernhes M, Schuch AP, Martins CF, Sánchez-Lamar Á. El extracto acuoso de Cymbopogon citratus protege al ADN plasmídico del daño inducido por radiación UVC. Ars Pharm. 2016; 57(4): 193-199

Marín-Tello C, Matos-Deza L, Aliaga-Arauco J, Lombardi-Pérez C, Castañeda-Marín E, Rengifo-Penadillos R, et al. Lepidium meyenii (maca) and the cerebral stimulation for mobile phones: some answers in an animal model. 3rd International Brain Stimulation Conference. Brain Stimul 2019;12(2):555. doi: https://doi.org/10.1016/j.brs.2018.12.835

Schultz-Hector S, Klaus-Rüdiger T. Radiation-induced cardiovascular diseases: Is the epidemiologic evidence compatible with the radiobiologic data? Int. J. Radiation Oncology Biol. Phys. 2007;67(1):10–18.

Luna J, Amaya E, de Torres M.ªV, Peña M.ªC, Prieto I. Nutrientes y radioterapia; revisión de la literatura. Nutr Hosp. 2015;32(6):2446-2459. doi: 10.3305/nh.2015.32.6.9596

MINISTERIO DE SALUD. “Tablas Peruanas de composición de los Alimentos.” Lima Perú; 2017. 1–146 p.

Castro I. Cytogenetic indicators for the identification of ionizing radiation exposure in humans. Acta med costarric. 2013;55(3):110–117.

Downloads

Published

2019-12-20

How to Cite

1.
Bayona Caballero ME, Alayo Zavaleta J, Lombardi Pérez CL, Marín Tello CL. The radioprotective effect of a wheat germ diet on rat myocardial tissue exposed to X-rays. Ars Pharm [Internet]. 2019 Dec. 20 [cited 2024 Jul. 3];60(4):213-8. Available from: https://revistaseug.ugr.es/index.php/ars/article/view/10226

Issue

Section

Original Articles