Desarrollo y evaluación de microesfera de seda Fibroin cargado de isoniacida

Autores/as

  • Narinder Singh Department of Pharmaceutics, CT institute of Pharmaceutical Sciences, Shahpur, Jalandhar.
  • Surya Prakash Gautam Department of Pharmaceutics, CT institute of Pharmaceutical Sciences, Shahpur, Jalandhar.
  • Harjaskaran Harjaskaran Department of Pharmaceutics, CT institute of Pharmaceutical Sciences, Shahpur, Jalandhar.
  • Amanjot Amanjot Department of Pharmaceutics, CT institute of Pharmaceutical Sciences, Shahpur, Jalandhar.
  • Lovepreet Singh Department of Pharmaceutics, CT institute of Pharmaceutical Sciences, Shahpur, Jalandhar.
  • Ankit Verma Department of Pharmaceutics, CT institute of Pharmaceutical Sciences, Shahpur, Jalandhar.
  • Shalu Rani Department of Pharmaceutics, CT institute of Pharmaceutical Sciences, Shahpur, Jalandhar.

DOI:

https://doi.org/10.30827/ars.v57i3.5331

Palabras clave:

fibroin de seda, nanoformulation, biodegradabilidad, isoniacida

Resumen

Objetivo: La investigación experimental en curso está dedicada a la preparación de microesferas de pequeño tamaño y buena esfericidad mediante el método de separación de fases con isoniazida (INH) como fármaco modélo. La fibroina de seda tiene cualidades intrínsecas únicas como la biodegradabilidad, biocompatibilidad o propiedades de liberación y su capacidad de carga de fármacos ajustable. La aptitud de entrega de carga de las moléculas de fármaco en las esferas de seda estar supeditada a su carga, y la hidrofobicidad o subsiguiente alteración en los perfiles de liberación de fármacos.

Métodos: En el presente trabajo la microesfera de fibroina de seda cargada de isoniazida fue preparada utilizando el método de separación de fases. La microesfera fue evaluada por espectroscopia ultravioleta-visible, espectroscopia infrarroja con transformado de Fourier, se midió la eficiencia de atrapamiento y se estudios mediante microscopia electrónica de barrido.

Resultados: Estudios con el microscopio de escaneo de electrones revelaron que las microesferas de fibroina cargada de isoniazida eran esféricas. La eficacia de atrapamiento de las microesferas de formulación diferente de F1 a F5 estuvo en el rango de 53 a 68 %. F3 mostró un 68,47 % de eficiencia de atrapamiento y tras optimizar la formulación de liberación de fármacos fue de 93,56 %, a las 24 horas.

Conclusión: Esta investigación reveló una nueva formulación de base acuosa para las esferas de seda con forma controlable o la forma y el tamaño de la esfera. Las microesferas de seda cargadas de isoniazida pueden actuar como ideal formulación nano con estudios elaborados.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Quenelle DC, Winchester GA, Staas JK, Barrow EL, Barrow WW.Treatment of tuberculosis using a combination of sustained-release rifampin-loaded microspheres and oral dosing with isoniazid. Antimicrobial Agents and Chemotherapy. 2001; 45:1637- 1644.

Ain Q, Sharma S, Khuller GK. Role of poly (DL-lactideco- glycolide) in development of sustained oral delivery systems for antitubercular drug(s). Int J Pharmed. 2002;239:37–46.

Giovagnoli, Blasi P, Schoubben A, Rossi C, Ricci M. Preparation of large porous biodegradable microspheres by using a simple double-emulsion method for capreomycin sulfate pulmonary delivery. Int J Pharm. 2007; 333:103-111.

Cook RO, Pannu RK, Kellaway IW. Novel sustained release microspheres for pulmonary drug delivery. J Control Rel. 2005; 104:79-90.

Vasir JK, Tambwekar K, Garg S. Bio adhesive microspheres as a controlled drug delivery system. Int J Pharm 2003; 255:13–32.

Altman GH, Diaz F, Jakuba C, Calabro T, Horan, RL, Chen J, Lu H, Richmond J, Kaplan DL. Silk-based biomaterials. Biomaterials. 2003;24:401-416

Eldridge JH, Hammond CJ, Meulbroek JA, Staas JK, Gilley RM, Tice TR. Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the Peyer’s patches. J Cont Rel. 1990;11:205–214.

Cowsar DR, Tice TR, Gilley RM, English JP. Poly(lactide-co-glycolide) microcapsules for controlled release of steroids. Methods Enzymol 1985;112:101–116.

Jacob E, Setterstrom JA, Bach DE, Heath JR, McNiesh LM, Cierny IG. Evaluation of biodegradable ampicillin anhydrate microcapsules for local treatment of experimental staphylococcal osteomyelitis. Clin Orthop Relat Res 1991; 267:237–244.

Mitchinson DA. The action of anti-tuberculosis drugs in short course chemotherapy. Int J Tuberc Lung Dis. 1985; 66:219-225.

Vedha Hari BN, Chitra KP, Bhimavarapu R, Karunakaran P, Muthukrishnan N, Samyuktha Rani B. Novel technologies: A weapon against tuberculosis, Indian J Pharmacol.2010;42: 338–344.

Zhang J, Zhaoli D, Xu S, Zhang S. Synthesis and characterization of karaya gum/chitosan composite microspheres. Iran Polym J.2009;18:307–313.

Cao Z, Chen X, Yao J, Huang L, Shao Z. The preparation of regenerated silk fibroin microspheres. Soft Matter. 2007;3:910.

Zheng Z, Yi L, Mao-bin X. Silk fibroin-based nanoparticles for drug delivery. Int J Mol sci.2015; 16:4880-4903.

Wang XQ, Yucel T, Lu Q, Hu X, Kaplan DL. Silk nanospheres and microspheres from silk/pva blend films for drug delivery. Biomaterials. 2010; 31:1025–1035.

Mitropoulos AN, Marelli B, Ghezzi CE, Applegate MB, Partlow BP, Kaplan DL, Omenetto FG. Transparent. Nanostructured Silk Fibroin Hydrogels with Tunable Mechanical Properties. 2015; 1 (10):964–970.

Kim HJ, Kim HS, Matsumoto A, Chin IJ, Jin HJ, Kaplan DL. Processing windows for forming silk fibroin biomaterials into a 3D porous matrix. Aust J Chem. 2005; 58:716–720.

Tanaka T, Tanigami T, Yamaura K. Phase separation structure in poly (vinyl alcohol)/silk fibroin blend films. Polym Int. 1998; 45:175–184.

Kamaly N, Yameen B, Wu J, Farokhzad OC .Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. 2016; 116 (4):2602–2663.

Hino T, Shimabayashi S, Nakai A. Silk microspheres prepared by spray-drying of an aqueous system. Pharm Pharmacol Commun. 2000; 6:335–339.

Farago S, Lucconi G, Perteghella S, Vigani B, Tripodo G, Sorrenti M, et al.. A dry powder formulation from silk fibroin microspheres as a topical auto-gelling device. Pharmaceutical Development and technology.2015; 45: 1097-9867.

Philipp FS, Gregory TJ, Jelena RK, Yinan L, David LK. pH-Dependent anticancer drug release from silk nanoparticles. Adv Health Mater.2013;2(12):1002-1011.

Wang X, Wenk E, Matsumoto A, Meinel L, Li C.Kaplan DL. Silk microspheres for encapsulation and controlled release. J Control Rel.2007;117:360–370.

Wang Y, Kim HJ, Vunjak-Novakovic G, Kaplan DL. Stem cell-based tissue engineering with silk biomaterials. Biomaterials.2006; 27:6064–6082.

Winkler S, Wilson D, Kaplan DL. Controlling beta-sheet assembly in genetically engineered silk by enzymatic phosphorylation/ dephosphorylation. Bio chem. 2000; 39:12739–12746.

Wang X, Wenk E, Matsumoto A, Meinel L, Li C, Kaplan DL.Silk microspheres for encapsulation and controlled release. J Con Rels. 2007; 117:360–370.

Dai L, Li J, Yamada E. Effect of glycerin on structure transition of PVA/SF blends. J Appl Polym Sci.2002; 86:2342–2347.

Xiaoli Z, Keyong T, Xuejing Z. Electrospinning and Crosslinking of COL/PVA Nanofiber-microsphere Containing Salicylic Acid for Drug Delivery. J Bio Eng. 2016; 13:143–149.

Segi N, Yotsuyanagi T and Ikeda K. Interaction of calcium-induced alginate gel beads with propranolol. Chem. Pharm. Bull.1989; 37 (11): 3092-3095.

Dinesh Kaushik, Satish Sardana and DinaNath Mishra. In-vitro characterization and cytotoxicity analysis of 5-Fluorouracil loaded chitosan microspheres for targeting colon cancer.Ind J Pharm EducRes.2010; 44 (3):274-282.

Rosca ID, Watari F, Uo M. Microparticle formation and its mechanism in single and double emulsion solvent evaporation. J Control Release. 2004; 99:271–28.

Qiang L, Haifeng L, Yubo F. Preparation of silk fibroin carriers for controlled release. Wiley periodicals,inc. 2015;8:1-9

Lammel A, Hu X, Park SH, Kaplan DL, Scheibel T. Controlling silk fibroin particle features for drug delivery. Biomaterials. 2010; 31(16): 4583–4591.

Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL. Materials fabrication from Bombyx mori silk fibroin.2011;6(10):1612-1631.

Rodrigues C, Gameiro P, Reis S, Lima JL, Castro B. Spectrophotometric determination of drug partition coefficients in dimiristoyl- L-a-phosphatidylcholine/water: a comparative study using phase separation and liposome suspensions, Anal Chim Acta. 2001; 428:103– 109.

Miranda L, Cheney, Shan N, Elisabeth R, Hanna M, Wojtas L, Michael J, Zaworotko, Sava V, Juan R, Sanchez-Ramos. Effects of Crystal Form on Solubility and Pharmacokinetics: A Crystal Engineering Case Study of Lamotrigine. Cryst Growth & Des.2010;10: 394-405.

Descargas

Publicado

2016-09-20

Cómo citar

1.
Singh N, Gautam SP, Harjaskaran H, Amanjot A, Singh L, Verma A, Rani S. Desarrollo y evaluación de microesfera de seda Fibroin cargado de isoniacida. Ars Pharm [Internet]. 20 de septiembre de 2016 [citado 28 de marzo de 2024];57(3):137-42. Disponible en: https://revistaseug.ugr.es/index.php/ars/article/view/5331

Número

Sección

Artículos Originales