Mecanismos de transducción del lipopolisacárido

Autores/as

  • A BERMEJO Departamento de Farmacología. Facultad de Farmacia
  • J DUARTE Departamento de Farmacología. Facultad de Farmacia

Palabras clave:

Shock séptico, Lipopolisacárido, CD14, TLR, MAP kinasas, Tyrosinkinasas, NF-κB

Resumen

El lipopolisacárido, componente de la pared de las bacterias Gram negativas, es el principal agente causante delshock séptico. Una vez en el torrente sanguíneo, el lipopolisacárido activa los sistemas de contacto y estimuladiferentes tipos celulares mediante moléculas de reconocimiento como el CD14 y los recientemente conocidos receptoresTLR, disparando diversas vías de transducción que interaccionan entre sí. Dentro de éstas destacan la vía delas MAP kinasas y la cascada de los TLR, que a su vez actúan sobre factores de transcripción. Uno de los principalesfactores nucleares es el NF-κB, con un papel fundamental en la inducción de enzimas implicadas en la producciónde citokinas y autacoides, tales como la óxido nítrico sintasa o la ciclooxigenasa inducibles. El aumento en laproducción de óxido nítrico, tromboxanos, prostaglandinas y otros agentes vasoactivos derivados de las enzimassintetizadas da lugar a las graves alteraciones cardiovasculares características del shock séptico.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Parrillo JE. Mechanisms of septic shock. N Engl J Med 1993; 328: 1471-47.

Kilbourn R. Nitric oxide and septic shock. Dis Mon 1997; 43: 281-348.

Brandtzaeg P. Significance and pathogenesis of septic shock. Curr Top Microbiol Immunol 1996; 216: 16-37.

Shenep JL. Septic shock. Adv Ped Infect Dis 1997; 12: 209-41.

Giudici D, Baudo F, Palareti G, Ravizza A, Ridolfi L, D’Angelo A. Antithrombin replacement in patients with sepsis

and septic shock. Haematologica 1999; 84: 452-60.

Mayeux RP. Pathobiology of lipopolysaccharide. J Tox Environm Health 1997; 51: 415-35.

Raetz CRH. Biochemistry of endotoxins. Annu Rev Biochem 1990; 59: 129-70.

Rietschel ET, Brade H, Holst O, Brade L, Müller-Loennies S, Mamat U, et al. Bacterial endotoxin: Chemical constitution,

biological recognition, host response, and immunological detoxification. Curr Top Microbiol Immunol 1996; 216:

-81.

Hurley JC. Antibiotic-induced release of endotoxin: a reappraisal. Clin Infect Dis 1992; 15: 840-54.

Takayama K, Mitchell DH, Din ZZ, Mukerjee P, Li C, Coleman DL. Monomeric Re lipopolysaccharide from Escherichia

coli is more active than the aggregated form in the Limulus amoebocyte assay and in inducing Egr-1 mRNA

in murine peritoneal macrophages. J Biol Chem 1994; 269: 2241-4.

Taylor AH, Heavner G, Nedelman M, Sherris D, Brunt E, Knight D, et al. Lipopolysaccharide (LPS) neutralizing

peptides reveal a lipid A binding site of LPS binding protein. J Biol Chem 1995; 270: 17934-8.

Wurfel MM, Hailman E, Wright SD. Soluble CD14 acts as a shuttle in the neutralization of lipopolysaccharide (LPS)

by LPS-binding protein and reconstituted high density lipoprotein. J Exp Med 1995; 181: 1743-54.

Ulevitch R, Tobias P. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol

; 13: 437-57.

Yu B, Wright SD. Catalitic properties of lipopolysaccharide (LPS) binding protein: Transfer of LPS to soluble CD14.

J Biol Chem 1996; 271: 4100-5.

Heumann D, Glauser MP, Calandra T. Molecular basis of host-pathogen interaction in septic shock. Curr Opin Microbiol

; 1: 49-55.

Malhotra R, Priest R, Foster MR, Bird MI. P-selectin binds to bacterial lipopolysaccharide. Eur J Immunol 1998; 28:

-8.

Glauser MP. Pathophysiologic basis of sepsis: considerations for future strategies of intervention. Crit Care Med 2000;

: S4-8.

O’Neill L. The Toll/interleukin-I receptor domain: a molecular switch for inflammation and host defence. Biochem Soc

Trans 2000; 28: 557-63.

Wolkow PP. Involvement and dual effects of nitric oxide in septic shock. Inflamm Res 1998; 47: 152-66.

Pixley RA, De la Cadena R, Page JD, Kaufman N, Wynshock EG, Chang A, et al. The contact system contributes to

hypotension but not disseminated intravascular coagulation in lethal bacteremia. In vivo use of a monoclonal

anti-factor XII antibody to block contact activation in baboons. J Clin Invest 1993; 91: 6-8.

Suffredini AF, Harpel PC, Parrillo JE. Promotion and subsequent inhibition of plasminogen activation after administration

of intravenous endotoxin to normal subjects. N Engl J Med 1989; 320: 1165-72.

De Boer JP, Creasey AA, Chang A, Roem D, Eerenberg AJ, Hack CE, Taylor FB. Activation of the complement system

in baboons challenged with live Escherichia coli: correlation with mortality and evidence for a biphasic activation

pattern. Infect Immun 1993; 61: 4293-301.

Hailman E, Lichenstein HS, Wurfel MM, Miller DS, Johnson DA, Kelley M, et al. Lipopolysaccharide (LPS)-binding

protein accelerates the binding of LPS to CD14. J Exp Med 1994; 179: 269-77.

Poltorak A, Ricciardi-Castagnoli P, Citterio S, Beutler B. Physical contact between lipopolysaccharide and toll-like

receptor 4 revealed by genetic complementation. Proc Natl Acad Sci USA 2000; 97: 2163-7.

Yang RB, Mark MR, Gurney AL, Godowski PJ. Signalling events induced by lipopolysaccharide-activated toll-like

receptor 2. J Immunol 1999; 163: 639-43.

Akira S. Toll-like receptors: lessons from knockout mice. Biochem Soc Trans 2000; 28: 551-6.

Tanke T, Van de Loo JW, Rhim H, Leventhal PS, Proctor RA, Bertics PJ. Bacterial lipopolysaccharide-stimulated

GTPase activity in RAW 264.7 macrophage membranes. Biochem J 1991; 277: 379-85.

Chang ZL, Novotney A, Suzuki T. Phospholipase C and A2 in tumoricidal activation of murine macrophage-like cell

lines. FASEB J 1990; 4: A1753.

Pruzanski W, Mackensen A, Engelhardt R, Stefanski E, Vadas P. Induction of circulating phospholipase A2 activity by

intravenous infusion of endotoxin in patients with neoplasia. J Immunother 1992; 12: 242-6.

Fleming I, Bara AT, Busse R. Calcium signalling and autacoid production in endothelial cells are modulated by changes

in tyrosine kinase and phosphatase activity. J Vasc Res 1996; 33: 225-34.

Nakano M, Saito S, Nakano Y, Yamasu H, Matsuura M, Shinomiya H. Intracellular protein phosphorylation in murine

peritoneal macrophages in response to bacterial lipopolysaccharide (LPS): effects of kinase-inhibitors and LPS-induced

tolerance. Immunobiol 1993; 187: 272-82.

Mattsson E, Van Dijk H, Van Kessel K, Verhoef J, Fleer A, Rollof J. Intracellular pathways involved in tumor necrosis

factor-? release by human monocytes on stimulation with lipopolysaccharide or staphylococcal peptidoglycan are

partly similar. J Infect Dis 1996; 173: 212-8.

Joseph CK, Wright SD, Bornmann WG, Randolph JT, Kumar ER, Bittmann R, et al. Bacterial lipopolysaccharide has

structural similarity to ceramide and stimulates ceramide-activated protein kinase in myeloid cells. J Biol Chem

; 269: 17606-10.

Hayakawa M, Jayadev S, Tsujimoto M, Hannun YA, Ito J. Role of ceramide in stimulation of the transcription of

cytosolic phospolipase A2 and cyclooxigenase 2. Biochem Biophys Res Comm 1996; 220: 681-6.

Liu G, Kleine L, Hebert RL. Advances in the signal transduction of ceramide and related sphingolipids. Crit Rev Clin

Lab Sci 1999; 36: 511-73.

Shapira L, Takashiba S, Champagne C, Amar S, Van Dyke TE. Involvement of protein kinase C and protein tyrosine

kinase in lipopolysaccharide-induced TNF? and IL-? production in human monocytes. J Immunol 1994; 153: 1818-24.

Kozak W, Klir JJ, Conn CA, Kluger MJ. Attenuation of lipopolysaccharide fever in rats by protein kinase C inhibitors.

Am J Physiol 1997; 273: R873-9.

Ruetten H, Thiemermann C. Effects of tyrphostins and genistein on the circulatory failure and organ dysfunction caused

by endotoxin in the rat: a possible role for protein tyrosine kinase. Br J Pharmacol 1997; 122: 59-70.

Knapp KM, English BK. Ceramide-mediated stimulation of inducible nitric oxide synthase (iNOS) and tumor necrosis

factor (TNF) accumulation in murine macrophages requires tyrosine kinase activity. Leukoc Biol 2000; 67: 735-41.

Kuo ML, Chau YP, Wang JH, Lin PJ. The role of Src kinase in the potentiation by ethanol of cytokine- and endotoxin-mediated

nitric oxide synthase expression in rat hepatocytes. Mol Pharmacol 1997; 52: 535-41.

Meng F, Lowell C. Lipopolysaccharide (LPS)-induced macrophage activation and signal transduction in the absence of

src-family kinases Hck, Fgr, and Lyn. J Exp Med 1997; 185: 1661-7.

Downey JS, Han J. Cellular activation mechanisms in septic shock. Front Biosc 1998; 30: D468-76.

Li JD, Feng W, Gallup M, Kim JH, Gum J, Kim Y, et al. Activation of NF-?B via a Src-dependent Ras-MAPK-pp90rsk

pathway is required for Pseudomonas aeruginosa-induced mucin overproduction in epithelial cells. Proc Natl Acad

Sci USA 1998; 95: 5718-23.

Nishiya T, Uehara T, Edamatsu H, Kaziro Y, Itoh H, Nomura Y. Activation of Stat1 and subsequent transcription of

inducible nitric oxide synthase gene in C6 glioma cells is independent of interferon-?-induced MAPK activation that

is mediated by p21ras. FEBS Lett 1997; 408: 33-8.

Nakashima O, Terada Y, Inoshita S, Kuwahara M, Sasaki W, Marumo F. Inducible nitric oxide synthase can be induced

in the absence of active nuclear factor –kappaB in rat mesangial cells: involvement of the Janus kinase 2 pathway.

J Am Soc Nephrol 1999; 10: 721-9.

Arditi M, Zhou J, Torres M, Durden D, Stins M, Kim KS. Lipopolysaccharide stimulates the tyrosine phosphorylation

of mitogen-activated protein kinases p44, p42, and p41 in vascular endothelial cells in a soluble CD14-dependent

manner. J Immunol 1995; 155: 3994-4003.

Schumann RR, Pfeil D, Lamping N, Kirschning C, Scherzinger G, Schlag P, et al. Lipopolysaccharide induces the rapid

tyrosine phosphorylation of the mitogen-activated protein kinases erk-1 and p38 in cultured human vascular endothelial

cells requiring the presence of soluble CD14. Blood 1996; 87: 2805-14.

Pietersma A, Tilly BC, Gaestel M, De Jong N, Lee JC, Foster JF, et al. p38 mitogen activated protein kinase regulates

endothelial VCAM-1 expression at the post-transcriptional level. Biochem Biophys Res 1997; 230: 44-8.

Baydoun AR, Wileman SM, Wheeler-Jones CPD, Marber MS, Mann GE, Pearson JD, Closs EI. Transmembrane

signalling mechanisms regulating expression of cationic aminoacid transporters and inducible nitric oxide synthase

in rat vascular smooth muscle cells. Biochem J 1999; 344: 265-72.

Weinstein SL, Gold MR, De Franco AL. Bacterial lipopolysaccharide stimulates phosphorylation in macrophages. Proc

Natl Acad Sci USA 1991; 88: 4148-52.

Weinstein SL, Sanghera JS, Lemke K, De Franco AL, Pelech SL. Bacterial lipopolysaccharide induces tyrosine phosphorylation

and activation of mitogen-activated protein kinases in macrophages. J Biol Chem 1992; 267: 14955-62.

Reimann T, Buscher D, Hipskind RA, Krautwald S, Lohmann-Matthes M, Baccarini M. Lipopolysaccharide induces

activation of the Raf-1/MAP kinase pathway. A putative role for Raf-1 in the induction of the IL-1? and the TNF-?

genes. J Immunol 1994; 153: 5740-9.

Saklatvala J, Davis W, Guesdon F. Interleukin 1 (IL-1) and tumor necrosis factor (TNF) signal transduction. Phil Trans

R Soc London 1996; B 351: 151-7.

Kyriakis JM, Avruch J. Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem

; 271: 13776-80.

Derijard B, Raingeaud J, Barrett T, Wu I, Han J, Wlevitch RJ, Davis RJ. Independent human MAP kinase signal

transduction pathways defined by MEK and MKK isoforms. Science 1995; 267: 682-5.

Chen ZJ, Parent L, Maniatis T. Site-specific phosphorylation of I?Ba by a novel ubiquitation-dependent protein kinase

activity. Cell 1996; 84: 853-62.

Yao J, Mackman N, Edgington TS, Fan S. Lipopolysaccharide induction of the tumor necrosis factor-a promoter in

human monocytic cells: regulation by Egr-1, c-Jun, and NF-?B transcription factors. J Biol Chem 1997; 272:

-801.

Hecker M, Cattaruza M, Wagner AH. Regulation of inducible nitric oxide synthase gene expression in vascular smooth

muscle cells. Gen Pharmacol 1999; 32: 9-16.

Zhang S, Han J, Sells MA, Chernoff J, Knaus UG, Ulevitch RJ, et al. Rho family GTPases regulate p38 MAP kinase

through the downstream mediator Pak1. J Biol Chem 1995; 270: 23934-6.

Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, et al. MD-2, a molecule that confers lipopolysaccharide

responsiveness on Toll-like receptor 4. J Exp Med 1999; 189: 1777-82.

Beutler B, Poltorak A. Positional cloning of Lps, and the general role of toll-like receptors in the innate immune

response. Eur Cytokine Netw 2000; 11: 143-52.

Takeuchi O, Takeda K, Hoshino L, Adachi O, Ogawa T, Akira S. Cellular responses to bacterial cell wall components

are mediated through MyD88-dependent signaling cascades. Int Immunol 2000; 12: 113-7.

Muzio M, Ni J, Feng P, Dixit VM. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1

signalling. Science 1997; 278: 1612-5.

Malinin NL, Boldin MP, Kovalenko AV, Wallach D. MAP3K-related kinase involved in NF-kappaB induction by TNF,

CD95 and IL-1. Nature 1997; 385: 40-4.

Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K. The kinase TAK1 can activate the NIK-I

kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 1999; 398: 252-6.

Kopp E, Medzhitov R, Carothers J, Xiao C, Douglas I, Janeway CA, et al. ECSIT is an evolutionarily conserved

intermediate in the Toll/IL-1 signal transduction pathway. Genes Dev 1999; 13. 2059-71.

Hauschildt SH, Scheipers P, Bessler WG. Lipopolysaccharide-induced change of ADP-ribosylation of a cytosolic

protein in bone-marrow-derived macrophages. Biochem J 1994; 297: 17-20.

Heine H, Ulmer AJ, Flad HD, Hauschildt S. LPS-induced change of phosphorylation of two cytosolic proteins in human

monocytes is prevented by inhibitors of ADP-rybosilation. J Immunol 1995; 155: 4899-908.

Molina y Vedia L, McDonald B, Reep B, Brüne B, Di Silvio M, Billiar TR, et al. Nitric-oxide induced S-nitrosylation

of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation.

J Biol Chem 1992; 267: 24929-32.

Szabo C. Role of poly(ADP-ribose) synthetase activation in the suppression of cellular energetics in response to nitric

oxide and peroxynitrite. Biochem Soc Trans 1997; 25: 919-24.

Baeuerle PA, Baltimore D. NF-?B: Ten years after. Cell 1996; 87: 13-20.

Di Donato JA, Hayakama M, Rothward DM, Zandi E, Karin M. A cytokine-responsive I?B kinase that activates the

transcription factor NF-?B. Nature 1997; 338: 548-54.

Zandi E, Rothward DM, Delhase M, Hayakawa M, Karin M. The I?B kinase complex (IKK) contains two kinase

subunits, IKK? and IKK?, necessary for I?B phosphorylation and NF-?B activation. Cell 1997; 91: 243-52.

Maniatis T. Catalysis by a multiprotein I?B complex. Science 1997; 278: 818-9.

Woronicz JD, Gao X, Cao Z, Rothe M, Goeddel DV. I?B kinase-?: NF-?B activation and complex formation with I?B

kinase-? and NIK. Science 1997; 278: 866-9.

Mukaida N, Ishikawa Y, Ikeda N, Fukioka N, Watanabe S, Kuno K, et al. Novel insight into molecular mechanism of

endotoxin shock: biochemical analysis of LPS receptor signalling in a cell-free system targeting NF-?B and regulation

of cytokine production/actioin through b2 integrin in vivo. J Leukoc Biol 1996; 59: 145-51.

Jefferies CA, O’Neill LA. Rac1 regulates interleukin 1-induced nuclear factor kappaB activation in an inhibitory protein

kappaB-alpha-independent manner by enhancing the ability of the p65 subunit to transactivate gene expression. J

Biol Chem 2000; 275: 3114-20.

Hannin YA. Functions of ceramide in coordinating cellular responses to stress. Nature 1996; 274: 1855-9.

Müller JM, Ziegler-Heitbrock HW, Baeuerle PA. Nuclear factor kappa B, a mediator of lipopolysaccharide effects.

Immunobiology 1993; 187: 233-56.

Xie Q, Kashiwabara Y, Nathan C. Role of transcription factor NF-?B/Rel in induction of nitric oxide. J Biol Chem

; 269: 4705-8.

Liu SF, Ye X, Malik AB. In vivo inhibition of nuclear factor ?B activation prevents inducible nitric oxide synthase

expression and systemic hypotension in a rat model of septic shock. J Immunol 1997; 159: 3976-83.

Rao KMK. Molecular mechanisms regulating iNOS expression in various cell types. J Tox Environ Health 2000; 3:

-58.

Waage A, Halstensen A, Espevik T. Association between tumour necrosis factor in serum and fatal outcome in patients

with meningococcal disease. Lancet 1987; 1: 355-7.

Michie, HR, Manogue, KR, Spriggs, DR, Revhaug, A, O’Dwyer, S, Dinarello, CA, et al. Detection of circulating tumor

necrosis factor after endotoxin administration. N Engl J Med 1988; 318: 1481-6.

Cannon JG, Tompkins RG, Gelfand JA, Michie HR, Standford GG, Van der Meer JWM, et al. Circulating interleukin-1

and tumor necrosis factor in septic shock and experimental endotoxin fever. J Infect Dis 1990; 161: 79-84.

Pinsky MR, Vincent JL, Deviere J, Alegre M, Kahn RJ, Dupont E. Serum cytokine levels in human septic shock.

Relation to multiple-system organ failure and mortality. Chest 1993; 103: 565-75.

Marty C, Misset B, Tamion F, Fitting C, Carlet J, Cavaillon JM. Circulating interleukin-8 concentrations in patients

with multiple organ failure of septic and nonseptic origin. Crit Care Med 1994; 22: 673-9.

Koltai M, Hosford D, Braquet PG. Platelet-activating factor in septic shock. New Horizons 1993; 1: 87-95.

Waring PM, Waring JL, Metcalf D. Circulating leukemia inhibiting factor levels correlate with disease severity in

meningococcemia. J Infect Dis 1994; 170: 1224-8.

Chantry D, Turner M, Abney E, Feldmann M. Modulation of cytokine production by transforming growth factor-beta.

J Immunol 1989; 142: 4295-300.

Vannier E, Miller LC, Dinarello CA. Coordinated anti-inflammatory effects of interleukin 4: Interleukin 4 suppresses

interleukin 1 production but up-regulates gene expression and synthesis of interleukin 1 receptor antagonist. Proc

Natl Acad Sci USA 1992; 89: 4076-80.

Derkx B, Marchant A, Goldman M, Bijlmer R, Van Deventer S. High levels of interleukin-10 during the initial phase

of fulminant meningococcal septic shock. J Infect Dis 1995; 171: 229-32.

Doherty TM, Kastelein R, Menon S, Andrade S, Coffman RL. Modulation of murine macrophage function by IL-13.

J Immunol 1993; 151: 7151-60.

Dower SK, Fanslow W, Jacobs C, Waugh S, Sims JE, Widmer MB. Interleukin-1 antagonists. Ther Immunol 1994; 1:

-22.

Williams G, Brett P, Giroir MD. Regulation of citokine gene expression: Tumor necrosis factor, interleukin-1, and the

emerging biology of cytokine receptors. New Horizons 1995; 3: 276-87.

Gurll HJ, Reynolds DG, Holaday JW. Evidence for a role of endorphins in the cardiovascular pathophysiology of

primate shock. Crit Care Med 1988; 16: 521-30.

Casale TB, Ballas ZK, Kaliner M, Keahey T. The effect of intravenous endotoxin on various host-effector molecules.

J Allergy Clin Immunol 1990; 85: 45-51.

Revhaug A, Lygren I, Jenssen TF, Giercksky KE, Burhol PG. Vasoactive intestinal peptide in sepsis and shock. Ann

NY Acad Sci 1988; 527: 536-45.

Schade UF, Engel R, Jacobs D. Differential protective activities of site specific lipoxygenase inhibitors in endotoxic

shock and production of tumor necrosis factor. Int J Immunopharmacol 1991; 13: 565-71.

Fatehi-Hassanabad Z, Furman BL, Parratt JR. Effect of endotoxin on sympathetic responses in the rat isolated perfused

mesenteric bed; involvement of nitric oxide and cyclo-oxygenase products. Br J Pharmacol 1995; 116: 3316-22.

Brigham KL. Oxygen radicals – an important mediator of sepsis and septic shock. Klin Wochenschr 1991; 69: 1004-8.

Burrel R. Human response to bacterial endotoxin. Circ Shock 1994; 43: 137-53.

Mayer AMS. Therapeutic implications of microglia activation by lipopolysaccharide and reactive oxygen species

generation in septic shock and central nervous system pathologies: a review. Shock 1998; 58: 377-85.

Knowles RG, Merret M, Salter M, Moncada S. Differential induction of brain, lung and liver nitric oxide synthase

by endotoxin in the rat. Biochem J 1990; 270: 833-6.

Liu SF, Adcock IM, Old RW, Barnes PJ, Evans TW. Lipopolysaccharide treatment in vivo induces widespread tissue

expression of inducible nitric oxide synthase mRNA. Biochem Biophys Res Commun 1993; 196: 1208-13.

Descargas

Publicado

2003-03-20

Cómo citar

1.
BERMEJO A, DUARTE J. Mecanismos de transducción del lipopolisacárido. Ars Pharm [Internet]. 20 de marzo de 2003 [citado 25 de abril de 2024];44(2):121-39. Disponible en: https://revistaseug.ugr.es/index.php/ars/article/view/5144

Número

Sección

Artículos Originales