Técnicas de estudio de fagocitosis in vivo y su aplicación en la investigación de la actividad inmunomuduladora de antibióticos

Autores/as

  • K ALKOUWATLI Department of Biochemistry and Microbiology, Faculty of Pharmacy, University of Damascus, Syria
  • M LEIVA Department of Microbiology, Faculty of Pharmacy, University of Granada, Spain.
  • A RUIZ-BRAVO Department of Microbiology, Faculty of Pharmacy, University of Granada, Spain.
  • M JIMÉNEZ-VALERA Department of Microbiology, Faculty of Pharmacy, University of Granada, Spain.

Palabras clave:

Fagocitosis, Depuración, Modelo murino, Microorganismos extracelulares, Microorganismos intracelulares, Azitromicina, Tratamiento de larga duración

Resumen

La depuración de partículas de la sangre es una medida de la capacidad funcional del sistema fagocíticomononuclear, responsable de la eliminación sistémica de microorganismo patógenos, inmunocomplejosy células apoptósicas. Esta capacidad puede ser alterada por agentes modificadores de la respuestabiológica, entre los que figuran numerosos agentes antimicrobianos. En este trabajo se comparó laefectividad de la medida de la capacidad de depuración de ratones BALB/c inoculados con distintosmicroorganismos (una levadura, dos bacterias Gram-positivas, extra- e intracelular, y dos bacteriasGram-negativas, asimismo extra- e intracelular). La levadura Candida albicans fue seleccionada, por suapropiada cinética de depuración y su resistencia natural a agentes antibacterianos, para estudiar lamodificación de la fagocitosis in vivo por el antibiótico macrólido azitromicina. El tratamiento conazitromicina durante 10 y 20 días disminuyó la capacidad de depuración del sistema fagocítico-mononuclear.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Brown GD, Gordon S. Phagocytes and anti-infective immunity. In: Kaufmann SHE, Sher A, Ahmed R, eds. Immunology of infectious diseases. Washington DC: ASM Press. 2002; 79-91.

Unanue E. Interactions of pathogens with the innate and adaptive immune system. In: Cossart P, Boquet P, Normark S, Rappuoli R, eds. Cellular microbiology. Washington DC: ASM Press. 2000; 291-311.

Kim SJ, Gershov D, Ma X, Brot N, Elkon KB. Opsonization of apoptotic cells and its effect on macrophage and T cell immune responses. Ann N Y Acad Sci. 2003; 987: 68-78.

Rosenzweig SD, Holland SM. Phagocyte immunodeficiencies and their infections. J Allergy Clin Immunol. 2004; 113: 620-626.

Roth JA. Enhancement of nonspecific resistance to bacterial infection by biological response modifiers. In: Roth JM, ed.

Virulence mechanisms of bacterial pathogens. Washington DC: ASM Press. 1988; 329-342.

Jimenez-Valera M, Moreno E, Ruiz-Bravo A. Immunomodulation by antimicrobial agents. Recent Res Devel Antimicrob Agents Chemother. 1997; 2: 83-94.

Labro MT. Interference of antibacterial agents with phagocyte functions: immunomodulation or «immuno-fairy tales»? Clin

Microbiol Rev 2000; 13: 615-650.

Labro MT, Abdelghaffar H. Immunomodulation by macrolide antibiotics. J Chemother. 2001; 13: 3-8.

Amsden GW. Anti-inflammatory effects of macrolides. An underappreciated benefit in the treatment of community-acquired

respiratory tract infections and chronic inflammatory pulmonary conditions. J Antimicrob Chemother 2005; 55: 10-21.

Hatipoglu U, Rubinstein I. Low-dose, long-term macrolide therapy in asthma: an overview. Clin Mol Allergy 2004; 2:1-4.

Dicarlo F.J., O’Driscoll RG, Haynes LJ, Sliver NJ, Steinetz BG. Acceleration of intravascular carbon clearance in mice by inhaled endotoxin. Can J Biochem Physiol. 1963; 41: 2034-2037.

Lightfoot RW Jr, Garfein GR, Christian CL. The effect of steroids on the clearance and fate of bacteria. J Reticuloendothel Soc. 1968; 5: 340-352.

Jayathirtha MG, Mishra SH. Preliminary immunomodulatory activities of methanol extracts of Eclipta alba and Centella

asiatica. Phytomedicine. 2004; 11: 361-365.

Shin KH, Lim SS, Lee S, Lee YS, Jung SH, Cho SY. Anti-tumour and immuno-stimulating activities of the fruiting bodies of Paecilomyces japonica, a new type of Cordyceps spp. Phytother Res. 2003; 17: 830-833.

Fraser-Smith EB, Waters RV, Matthews TR. Correlation between in vivo anti-Pseudomonas and anti-Candida activities and clearance of carbon by the reticuloendothelial system for various muramyl dipeptide analogs, using normal and immunosuppressed mice. Infect Immun. 1982; 35: 105-110.

Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002; 20: 197-216.

Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003; 21: 335-376.

Young DA, Dobson P, Karakawa WW. Immunological specificity of natural opsonins and their role in the cross-reactivity between Staphylococcus aureus Mardi and Escherichia coli 101. Infect Immun. 1979; 25: 954-959.

Liang-Takasaki CJ, Saxen H, Makela PH, Leive L. Complement activation by polysaccharide of lipopolysaccharide: an

important virulence determinant of salmonellae. Infect Immun. 1983; 41: 563-569.

Tomazic J, Maticic M, Kotnik V, Simcic S, Wraber B, Zakotnik B. Ex vivo effect of azithromycin in human leukocyte bactericidal functions. Antimicrob Agents Chemother. 1995; 39: 1906.

Matute AJ, Schurink CAM, Krijnen RMC, Florijn A, Rozenberg-Arska M, Hoepelman IM. Double-blind, placebocontroled study comparing the effect of azithromycin with clarithromycin on oropharingeal and bowel microflora in volunteers. Eur J Clin Microbiol Infect Dis. 2002; 21: 427-431.

Samonis G, Maraki S. Anatoliotakis N, Anatoliotaki M, Apostolakou H, Margioris AN, et al. Effects of erythromycin, clarithromycin, roxithromycin and azithromycin on murine gut colonization by Candida albicans. Med Mycol. 2002; 40:139-142.

Schoni MH. Macrolide antibiotic therapy in patients with cystic fibrosis. Swiss Med Wkly. 2003; 133: 297-301.

Wildfeuer A, Laufen H, Zimmermann T. Uptake of azithromycin by various cells and its intracellular activity under in vivo conditions. Antimicrob Agents Chemother. 1996; 40: 75-79.

Bonnet M, Van de Auwera P. In vitro and in vivo intraleukocytic accumulation of azithromycin (CP-62, 993) and its influence on ex vivo leukocyte chemiluminiscence. Antimicrob Agents Chemother. 1992; 36: 1302-1309.

Wenisch C, Parschalk B, Zedtwitz-Liebenstein K, Weihs A, El Menyawi I, Graninger W. Effect of single oral dose of

azithromycin, clarithromycin, and roxithromycin on polymorphonuclear leukocyte function assessed ex vivo by flow

cytometry. Antimicrob Agents Chemother. 1996; 40: 2039-2042.

Ortega E, Escobar MA, Gaforio JJ, Algarra I, Alvarez de Cienfuegos G. Modification of phagocytosis and cytokine production in peritoneal and splenic murine cells by erythromycin A, azithromycin and josamycin. J Antimicrob Chemother 2004; 53: 367-370.

Xu G, Fujita J, Negayama K, Yuube K, Hojo S, Yamaji Y et al. Effect of macrolide antibiotics on macrophage functions.

Microbiol Immunol. 1996; 40: 473-479.

Paik JW, Kim CS, Cho KS, Chai JK, Kim CK, Choi SH. Inhibition of cyclosporin A-induced gingival overgrowth by azithromycin through phagocytosis: an in vivo and in vitro study. J Periodontol. 2004; 75: 380-387.

Terao H, Asano K, Kanai K, Kyo Y, Watanabe S, Hisamitau T, Suzaki H. Suppressive activity of macrolide antibiotics on nitric oxide production by lipopolysaccharide stimulation in mice. Mediators Inflamm. 2003; 12: 195-202.

Noursadeghi M, Bickerstaff MC, Herbert J, Moyes D, Cohen J, Pepys MB. Production of granulocyte colony-stimulating factor in the nonspecific acute phase response enhances host resistance to bacterial infection. J Immunol. 2002; 169:

-919.

Descargas

Publicado

2004-12-20

Cómo citar

1.
ALKOUWATLI K, LEIVA M, RUIZ-BRAVO A, JIMÉNEZ-VALERA M. Técnicas de estudio de fagocitosis in vivo y su aplicación en la investigación de la actividad inmunomuduladora de antibióticos. Ars Pharm [Internet]. 20 de diciembre de 2004 [citado 1 de mayo de 2024];46(1):43-55. Disponible en: https://revistaseug.ugr.es/index.php/ars/article/view/5063

Número

Sección

Artículos Originales