Revisión del estado actual y posibilidades de las aproximaciones más importantes al transporte específico de agentes quimioterápicos a las células tumorales.

Autores/as

  • E Sáez-Fernández Departamento de Farmacia y Tecnología Farmacéutica. Facultad de Farmacia. Universidad de Granada, Granada España.
  • MA Ruiz Departamento de Farmacia y Tecnología Farmacéutica. Facultad de Farmacia. Universidad de Granada, Granada España
  • A López-Ruiz Grupo de Investigación de Atención Farmacéutica. Facultad de Farmacia. Universidad de Granada, Granada. España
  • JL Arias Departamento de Farmacia y Tecnología Farmacéutica. Facultad de Farmacia. Universidad de Granada, Granada España.

Palabras clave:

Cáncer, Coloide Magnético, Fármaco Antitumoral, Nanomedicina, Nanopartícula, Transporte Activo de Fármacos, Transporte Pasivo de Fármacos

Resumen

Los principales problemas de la quimioterapia proceden esencialmente de la relativa falta deespecificidad derivada de la extensa biodistribución de los agentes antitumorales y de los efectossecundarios generados por la acción inespecífica de éstos en tejidos y órganos sanos. La necesidad deencontrar tratamientos eficaces contra el cáncer ha hecho que se incrementen las líneas deinvestigación en esta materia. Una de las aproximaciones más prometedoras en este sentido es eldesarrollo de sistemas coloidales biodegradables para el transporte de fármacos antitumorales.Gracias a éstos, se logra acumular específicamente la cantidad de fármaco administrada en el lugar deacción, logrando así un aumento significativo de la eficacia clínica, junto con una minimización delas reacciones adversas asociadas. En este trabajo, pretendemos analizar el estado actual en el diseñode coloides como transportadores de fármacos antitumorales, junto con la aplicación de las novedosasestrategias de transporte pasivo y activo de fármacos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Durán JDG, Arias JL, Gallardo V, Delgado AV. Magnetic colloids as drug vehicles. J. Pharm. Sci. 2008; 97: 2948-83.

Zhang DY, Shen XZ, Wang JY, Dong L, Zheng YL, Wu LL. Preparation of chitosan-polyaspartic acid-5-fluorouracil nanoparticles and its anti-carcinoma effect on tumor growth in nude mice. World J. Gastroenterol. 2008; 14: 3554-62.

Arias JL. Novel strategies to improve the anticancer action of 5-fluorouracil by using drug delivery systems. Molecules 2008; 13: 2340-69.

Cho K, Wang X, Nie S, Chen Z, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 2008; 14: 1310-16.

Couvreur P, Vauthier C. Nanotechnology: Intelligent design to treat complex disease. Pharm. Res. 2006; 23: 1417-50.

Gu FX, Karnik R, Wang AZ, Alexis F, Levy-Nissenbaum E, Hong S, Langer RS, Farokhzad OC. Targeted nanoparticles for cancer therapy. Nano Today 2007; 2: 14-21.

Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm., 2009; 71: 409-19.

Decuzzi P, Pasqualini R, Arap W, Ferrari M. Intravascular delivery of particulate systems: Does geometry really matter. Pharm. Res. 2009; 26: 235-43.

Huwyler J, Drewe J, Krähenbühl S. Tumor targeting using liposomal antineoplastic drugs. Int. J. Nanomed. 2008; 3: 21-9.

Patil YB, Toti US, Khdair A, Ma L, Panyam J. Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials 2009a; 30: 859-66.

Önyüksel H, Mohantya PS, Rubinsteina I. VIP-grafted sterically stabilized phospholipid nanomicellar 17-allylamino-17-demethoxy geldanamycin: A novel targeted nanomedicine for breast cancer. Int. J. Pharm. 2009; 365: 157-61.

Imai K, Takaoka A. Comparing antibody and small-molecule therapies for cancer. Nat. Rev. Cancer 2006; 6: 714-27.

Gao J, Zhonga W, Hea J, Li H, Zhanga H, Zhoua G, Li B, Lua Y, Zoua H, Koua G, Zhanga D, Wanga H, Guoa Y, Zhong Y. Tumor-targeted PE38KDEL delivery via PEGylated anti-HER2 immunoliposomes. Int. J. Pharm. 2009; 374: 145-52.

Kos J, Obermajer N, Doljaka B, Kocbeka P, Kristl J. Inactivation of harmful tumour-associated proteolysis by nanoparticulate system. Int. J. Pharm. 2009; 381: 106-12.

Sun B, Ranganathan B, Feng SS. Multifunctional poly(D,L-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by Trastuzumab for targeted chemotherapy of breast cancer. Biomaterials 2008; 29: 475-486.

Karmali PP, Kotamraju VR, Kastantin M, Black M, Missirlis D, Tirrell M, Ruoslahti E. Targeting of albumin-embedded paclitaxel nanoparticles to tumors. Nanomedicine: NBM 2009; 5: 73-82.

Garg A, Tisdale AW, Haidari E, Kokkoli E. Targeting colon cancer cells using PEGylated liposomes modified with a fibronectin-mimetic peptide. Int. J. Pharm. 2009; 366: 201-10.

Mai J, Song S, Rui M, Liu D, Ding Q, Peng J, Xu Y. A synthetic peptide mediated active targeting of cisplatin liposomes to Tie2 expressing cells. J. Control. Release 2009; 139: 174-81.

Guan H, McGuire MJ, Li S, Brown KC. Peptide-targeted polyglutamic acid doxorubicin conjugates for the treatment of alpha(v)beta(6)-positive cancers. Bioconjug. Chem. 2008; 19: 1813-21.

Veiseh O, Kievit FM, Gunn JW, Ratner BD, Zhang M. A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells. Biomaterials 2009; 30: 649-57.

Levy-Nissenbaum E, Radovic-Moreno AF, Wang AZ, Langer R, Farokhzad OC. Nanotechnology and aptamers: applications in drug delivery. Trends Biotechnol. 2008; 26: 442-9.

Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. USA 2006; 103: 6315-20.

Pan J, Feng SS. Targeting and imaging cancer cells by Folate-decorated, quantum dots (QDs)- loaded nanoparticles of biodegradable polymers. Biomaterials 2009; 30: 1176-83.

Esmaeili F, Grahremani MH, Ostad SN, Atyabi F, Seyedabadi M, Malekshahi MR, Amini M, Dinarvand R. Folate-receptor-targeting delivery of docetaxel nanoparticles prepared by PLGA-PEG-folate conjugate. J. Drug Target. 2008; 16: 415-23.

Liang B, He ML, Chan CY, Chen YC, Li XP, Li Y, Zheng D, Lin MC, Kung HF, Shuai XT, Peng Y. The use of folate-PEG-grafted-hybranched-PEI nonviral vector for the inhibition of glioma growth in the rat. Biomaterials 2009; 30: 4014-20.

Hwang SH, Rait A, Pirollo KF, Zhou Q, Yenugonda VM, Chinigo GM, Brown ML, Chang EH. Tumor-targeting nanodelivery enhances the anticancer activity of a novel quinazolinone analogue. Mol. Cancer. Ther. 2008; 7: 559-68.

Sahoo SK, Labhasetwar V. Enhanced antiproliferative activity of transferrin conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Mol. Pharm. 2005; 2: 373-83.

Li JL, Wang L, Liu XY, Zhang ZP, Guo HC, Liu WM, Tang SH. In vitro cancer cell imaging and therapy using transferring-conjugated gold nanoparticles. Cancer Lett. 2009a; 274: 319-26.

Bawa P, Pillay V, Choonara YE, Toif LC. Stimuli-responsive polymers and their applications in drug delivery. Biomed. Mater. 2009; 4: 15.

Kim D, Lee ES, Park K, Kwon IC, Bae YH. Doxorubicin loaded pH-sensitive micelle: antitumoral efficacy against ovarian A2780/DOXR tumor. Pharm. Res. 2008a; 25: 2074-82.

Li F, Wu H, Zhang H, Li F, Gu CH, Yang Q. Antitumor drug Paclitaxel-loaded pH-sensitive nanoparticles targeting tumor extracellular pH. Carbohydr. Polym. 2009b; 77: 773-8.

Kim MJ, Lee HJ, Lee IA, Kim IY, Lim SK, Cho HA, Kim JS. Preparation, of pH-sensitive, long-circulating and EGFR-targeted immunoliposomes. Arch. Pharm. Res. 2008b; 31: 539-46.

Kim IY, Kang YS, Lee DS, Park HJ, Choi EK, Oh YK, Son HJ, Kim JS. Antitumor activity of EGFR targeted pH-sensitive immunoliposomes encapsulating gemcitabine in A549 xenograft nude mice. J. Control. Release 2009; 140: 55-60.

Simard P, Leroux JC. pH-sensitive immunoliposomes specific to the CD33 cell surface antigen of leukemic cells. Int. J. Pharm. 2009; 381: 86-96.

Zhu L, Huo Z, Wang L, Tong X, Xiao Y, Ni K. Targeted delivery of methotrexate to skeletal muscular tissue by thermosensitive magnetoliposomes. Int. J. Pharm. 2009; 370: 136-43.

Purushotham S, Ramanujan RV. Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy. Acta Biomater. 2009; 6 (2): 502-510.

Zhang, J.; Misra, R.D.K. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: Core-shell nanoparticle carrier and drug release response. Acta Biomater. 2007; 3: 838-50.

Ang KL, Venkatraman S, Ramanujan RV. Magnetic PNIPA hydrogels for hyperthermia applications in cancer therapy. Mater. Sci. Eng. C. 2007; 27: 347-51.

Kallumadil M, Tada M, Nakagawa T, Abe M, Southern P, Pankhurst QA. Suitability of commercial colloids for magnetic hyperthermia. J. Magn. Magn. Mater. 2009; 321: 1509-13.

Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008; 108: 2064-110.

Glöckl G, Hergt R, Zeisberger M, Dutz S, Nagel S, Weitschies W. The effect of field parameters, nanoparticles properties and immobilization on the specific heating power in magnetic particle hyperthermia. J. Phys. Cond. Matter. 2006; 18: S2935-50.

Steinkea F, Andräa W, Heidec R, Wernera C, Bellemann ME. Rotating magnetic macrospheres as heating mechanism for remote controlled drug release. J. Magn. Magn. Mater. 2007; 311: 216-8.

Ciofani G, Riggio C, Raffa V, Menciassi A, Cuschieri A. A bi-modal approach against cancer: Magnetic alginate nanoparticles for combined chemotherapy and hyperthermia. Med. Hypotheses 2009; 73: 80-2.

Závišová V, Koneracká M, Múčková M, Kopčanský P, Tomašovičová N, Lancz G, Timko M, Pätoprstá B, Bartoš P, Fabián M. Synthesis and characterization of polymeric nanospheres with the anticancer drug paclitaxel and magnetic particles. J. Magn. Magn. Mater. 2009; 321: 1613-6.

Fernández-Pacheco R, Marquina C, Valdivia JG, Gutiérrez M, Romero MS, Cornudella R, Laborda A, Viloria A, Higuera T, García A, García de Jalón JA, Ibarra MR. Magnetic nanoparticles for local drug delivery using magnetic implants. J. Magn. Magn. Mater 2007; 311: 318-22.

Lin JJ, Chen JS, Huang SJ, Ko JH, Wang YM, Chen TL, Wang LF. Folic acid-Pluronic F127 magnetic nanoparticle clusters for combined targeting, diagnosis, and therapy applications. Biomaterials 2009; 30: 5114-24.

Tietze R, Jurgons R, Lyer S, Schreiber E, Wiekhorst F, Eberbeck D, Richter H, Steinhoff U, Trahms L, Alexiou C. Quantification of drug-loaded magnetic nanoparticles in rabbit liver and tumor after in vivo administration. J. Magn. Magn. Mater. 2009; 321: 1465-8.

Schroeder A, Honen R, Turjeman K, Gabizon A, Kost J, Barenholz Y. Ultrasound triggered release of cisplatin from liposomes in murine tumors. J. Control. Release 2009; 137: 63-8.

Andresen TL, Jensen SS, Kaasgaard T, Jørgensen K. Triggered activation and release of liposomal prodrugs and drugs in cancer tissue by secretory phospholipase A2. Curr. Drug Deliv. 2005; 2: 353-62.

Jabr-Milane LS, van Vlerken LE, Yadav S, Amiji MM. Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat. Rev. 2008; 34: 592-602.

Batrakova EV, Kabanov AV. Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control. Release 2008; 130: 98-106.

Sharma AK, Zhang L, Li S, Kelly DL, Alakhov VY, Batrakova EV, Kabanov AV. Prevention of MDR development in leukemia cells by micelle-forming polymeric surfactant. J. Control. Release 2008; 131: 220-7.

Wu J, Lu Y, Lee A, Pan X, Yang X, Zhao X, Lee R.J. Reversal of multidrug resistance by transferrin-conjugated liposomes coencapsulating doxorubicin and verapamil. J. Pharm. Pharm. Sci. 2007; 10: 350-7.

Patil Y, Sadhukha T, Ma L, Panyam J. Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance. J. Control. Release 2009b; 136: 21-9.

Pakunlu RI, Wang Y, Saad M, Khandare JJ, Starovoytov V, Minko T. In vitro and in vivo intracellular liposomal delivery of antisense oligonucleotides and anticancer drug. J. Control. Release 2006; 114: 153-62.

Pulkkinen M, Pikkarainen J, Wirth T, Tarvainen T, Haapa-aho V, Korhonen H, Seppälä J, Järvinen K. Three-step tumor targeting of paclitaxel using biotinylated PLA-PEG nanoparticles and avidin-biotin technology: formulation development and in vitro anticancer activity. Eur. J. Pharm. Biopharm. 2008; 70: 66-74.

Van Verklen LE, Duan Z, Seiden MV, Amiji MM. Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer. Cancer Res. 2007; 67: 4843-50.

Lee ES, Na K, Bae YH. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J. Control. Release 2005; 103: 405-18.

Lynch I, Dawson KA. Protein-nanoparticle interactions. Nano Today 2008; 3: 40-7.

Grainger DW. Nanotoxicity assessment: All small talk. Adv. Drug Deliv. Rev., 2009; 61: 419-21.

Karlsson HL, Gustafsson J, Cronholm P, Möller L. Size-dependent toxicity of metal oxide particles – A comparison between nano- and micrometer size. Toxicol. Lett. 2009; 188: 112-8.

Sunderland CJ, Steiert M, Talmadge JE, Derfus AM, Barry SE. Targeted nanoparticles for detecting and treating cancer. Drug Develop. Res. 2006; 67: 70-93.

Descargas

Publicado

2010-09-20

Cómo citar

1.
Sáez-Fernández E, Ruiz M, López-Ruiz A, Arias J. Revisión del estado actual y posibilidades de las aproximaciones más importantes al transporte específico de agentes quimioterápicos a las células tumorales. Ars Pharm [Internet]. 20 de septiembre de 2010 [citado 20 de noviembre de 2024];51(3):121-35. Disponible en: https://revistaseug.ugr.es/index.php/ars/article/view/4855

Número

Sección

Artículos de revisión