Aplicación de la tecnología de impresión en 3D para la formulación farmacéutica de flavonoides

Autores/as

  • Ivo Heyerdahl-Viau Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México, México https://orcid.org/0000-0002-8252-2552

DOI:

https://doi.org/10.30827/ars.v66i2.31923

Palabras clave:

Flavonoides, Impresión tridimensional, Manufactura de Fármacos

Resumen

Introducción: La impresión en 3D es una tecnología vanguardista que puede emplearse para formular compuestos farmacéuticos de baja solubilidad, como lo son los flavonoides, que son compuestos de origen vegetal a los cuales se les ha atribuido diversos efectos farmacológicos. Esta revisión describe los estudios en los que se ha aplicado esta tecnología para formular flavonoides en distintas formas farmacéuticas.

Método: Se realizó una revisión bibliográfica buscando en la base de datos Google Scholar y el motor de búsqueda Pubmed hasta el mes de enero del año 2025 empleando las palabras clave “3D printing”, “flavonoids” y “formulation”. Se seleccionaron artículos originales publicados en idioma inglés.

Resultados: Se encontraron 5 artículos. En ellos, se formularon los flavonoides puerarin, catequina, apigenina y quercetina. La puerarin, un flavonoide con efectos cardiovasculares se formuló en tabletas flotantes gástricas que extendieron su tiempo de permanencia en el estómago y mejoraron su liberación en comparación con tabletas convencionales. Para la catequina y apigenina, (flavonoides con propiedades antioxidantes y anticancerígenas, respectivamente) se diseñaron películas orales mucoadhesivas que permiten una absorción local rápida para el tratamiento de úlceras orales y leucoplasia, respectivamente. La quercetina, con actividad antimicrobiana contra Mycobacterium tuberculosis, se formuló en parches dérmicos que lograron liberar el fármaco de forma sostenida durante 70 h en estudios in vitro y mantuvieron niveles plasmáticos estables por hasta 18 días en modelos animales.

Conclusión: La impresión en 3D se ha empleado para formular exitosamente flavonoides en diferentes formas farmacéuticas, lo cual ha mejorado notablemente sus características biofarmacéuticas. Sin embargo, se trata de investigación básica, por lo que es importante llevar a cabo ensayos preclínicos de manera formal para que estos productos beneficien a pacientes reales, incluyendo pacientes veterinarios.

Descargas

Citas

Nabavi SM, Šamec D, Tomczyk M, Milella L, Russo D, Habtemariam S, et al. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnol Adv. 2020; 38: 107316. Doi: 10.1016/j.biotechadv.2018.11.005. DOI: https://doi.org/10.1016/j.biotechadv.2018.11.005

Shaikh JR, Patil M. Qualitative tests for preliminary phytochemical screening: An overview. Int J Chem Stud. 2020; 8(2): 603–608. Doi: 10.22271/chemi.2020.v8.i2i.8834. DOI: https://doi.org/10.22271/chemi.2020.v8.i2i.8834

Kozłowska A, Szostak-Węgierek D. Flavonoids – Food Sources, Health Benefits, and Mechanisms Involved. 2018; 65(2):79–85.

Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022; 383: 132531. Doi: 10.1016/j.foodchem.2022.132531. DOI: https://doi.org/10.1016/j.foodchem.2022.132531

Terahara N. Flavonoids in Foods: A Review. Natural Products Communications. 2015; 10(3): 1934578X1501000334. Doi: 10.1177/1934578X15010003. DOI: https://doi.org/10.1177/1934578X1501000334

Roy A, Khan A, Ahmad I, Alghamdi S, Rajab BS, Babalghith AO, et al. Flavonoids a Bioactive Compound from Medicinal Plants and Its Therapeutic Applications. Biomed Res Int. 2022; 2022(1): 5445291. Doi: 10.1155/2022/5445291. DOI: https://doi.org/10.1155/2022/5445291

Jucá MM, Cysne Filho FMS, de Almeida JC, Mesquita D da S, Barriga JR de M, Dias KCF, et al. Flavonoids: biological activities and therapeutic potential. Nat Prod Res. 2018; 34(5): 692–705. Doi: 10.1080/14786419.2018.1493588. DOI: https://doi.org/10.1080/14786419.2018.1493588

Zhao J, Yang J, Xie Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int J Pharm. 2019; 570: 118642. Doi: 10.1016/j.ijpharm.2019.118642. DOI: https://doi.org/10.1016/j.ijpharm.2019.118642

Gaikwad SS, Kshirsagar SJ. Review on Tablet in Tablet techniques. Beni-Suef Univ J Basic Appl Sci. 2020; 9(1): 1–7. Doi: 10.1186/s43088-019-0027-7. DOI: https://doi.org/10.1186/s43088-019-0027-7

Nagula RL, Wairkar S. Recent advances in topical delivery of flavonoids: A review. J Control Release. 2019; 296: 190–201. Doi: 10.1016/j.jconrel.2019.01.029. DOI: https://doi.org/10.1016/j.jconrel.2019.01.029

Yan Q, Dong H, Su J, Han J, Song B, Wei Q, et al. A Review of 3D Printing Technology for Medical Applications. Engineering. 2018; 4(5): 729–742. Doi: 10.1016/j.eng.2018.07.021. DOI: https://doi.org/10.1016/j.eng.2018.07.021

Prasad LK, Smyth H. 3D Printing technologies for drug delivery: a review. Drug Development and Industrial Pharmacy. 2015; 42(7):1019–1031. Doi: 10.3109/03639045.2015.1120743. DOI: https://doi.org/10.3109/03639045.2015.1120743

Wook Huh H, Na YG, Kang HC, Kim M, Han M, Mai Anh Pham T, et al. Novel self-floating tablet for enhanced oral bioavailability of metformin based on cellulose. Int J Pharm. 2021; 592: 120113. Doi: 10.1016/j.ijpharm.2020.120113. DOI: https://doi.org/10.1016/j.ijpharm.2020.120113

Jovanović M, Petrović M, Cvijić S, Tomić N, Stojanović D, Ibrić S, et al. 3D Printed Buccal Films for Prolonged-Release of Propranolol Hydrochloride: Development, Characterization and Bioavailability Prediction. Pharmaceutics. 2021; 13(12): 2143. Doi: 10.3390/pharmaceutics13122143. DOI: https://doi.org/10.3390/pharmaceutics13122143

Mohammed AA, Algahtani MS, Ahmad MZ, Ahmad J, Kotta S. 3D Printing in medicine: Technology overview and drug delivery applications. Ann 3D Print Med. 2021; 4: 100037. Doi: 10.1016/j.stlm.2021.100037. DOI: https://doi.org/10.1016/j.stlm.2021.100037

Li P, Zhang S, Sun W, Cui M, Wen H, Li Q, et al. Flexibility of 3D Extruded Printing for a Novel Controlled-Release Puerarin Gastric Floating Tablet: Design of Internal Structure. AAPS PharmSciTech. 2019; 20(6): 236. Doi: 10.1208/s12249-019-1455-3. DOI: https://doi.org/10.1208/s12249-019-1455-3

Li Q, Guan X, Cui M, Zhu Z, Chen K, Wen H, et al. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing. Int J Pharm. 2018; 535(1–2): 325–332. Doi: 10.1016/j.ijpharm.2017.10.037. DOI: https://doi.org/10.1016/j.ijpharm.2017.10.037

Seoane-Viaño I, Januskaite P, Alvarez-Lorenzo C, Basit AW, Goyanes A. Semi-solid extrusion 3D printing in drug delivery and biomedicine: Personalised solutions for healthcare challenges. J Control Release. 2021; 332. Doi: 10.1016/j.jconrel.2021.02.027. DOI: https://doi.org/10.1016/j.jconrel.2021.02.027

Karavasili C, Eleftheriadis GK, Gioumouxouzis C, Andriotis EG, Fatouros DG. Mucosal drug delivery and 3D printing technologies: A focus on special patient populations. Adv Drug Deliv Rev. 2021;176: 113858. Doi: 10.1016/j.addr.2021.113858. DOI: https://doi.org/10.1016/j.addr.2021.113858

Dumpa N, Butreddy A, Wang H, Komanduri N, Bandari S, Repka MA. 3D printing in personalized drug delivery: An overview of hot-melt extrusion-based fused deposition modeling. Int J Pharm. 2021; 600: 120501. Doi: 10.1016/j.ijpharm.2021.120501. DOI: https://doi.org/10.1016/j.ijpharm.2021.120501

Tan DK, Maniruzzaman M, Nokhodchi A. Advanced Pharmaceutical Applications of Hot-Melt Extrusion Coupled with Fused Deposition Modelling (FDM) 3D Printing for Personalised Drug Delivery. Pharm. 2018; 10(4): 203. Doi: doi.org/10.3390/pharmaceutics10040203. DOI: https://doi.org/10.3390/pharmaceutics10040203

Shi X, Fan N, Zhang G, Sun J, He Z, Li J. Quercetin amorphous solid dispersions prepared by hot melt extrusion with enhanced solubility and intestinal absorption. Pharm Dev Technol. 2020; 25(4): 472–481. Doi: 10.1080/10837450.2019.1709502. DOI: https://doi.org/10.1080/10837450.2019.1709502

Adnan M, Azad MOK, Ju HS, Son JM, Park CH, Shin MH, et al. Development of biopolymer-mediated nanocomposites using hot-melt extrusion to enhance the bio-accessibility and antioxidant capacity of kenaf seed flour. Appl Nanosci. 2020; 10(4): 1305–1317. Doi: 10.1007/s13204-019-01205-z. DOI: https://doi.org/10.1007/s13204-019-01205-z

Deshkar S, Rathi M, Zambad S, Gandhi K. Hot Melt Extrusion and its Application in 3D Printing of Pharmaceuticals. Curr Drug Deliv. 2021; 18(4): 387–407. Doi: 10.2174/1567201817999201110193655. DOI: https://doi.org/10.2174/1567201817999201110193655

Li P, Jia H, Zhang S, Yang Y, Sun H, Wang H, et al. Thermal Extrusion 3D Printing for the Fabrication of Puerarin Immediate-Release Tablets. AAPS PharmSciTech. 2020; 21(1): 20. Doi: 10.1208/s12249-019-1538-1. DOI: https://doi.org/10.1208/s12249-019-1538-1

Tagami T, Yoshimura N, Goto E, Noda T, Ozeki T. Fabrication of muco-adhesive oral films by the 3D printing of hydroxypropyl methylcellulose-based catechin-loaded formulations. Biol Pharm Bull. 2019; 42(11): 1898–1905. Doi: 10.1248/bpb.b19-00481. DOI: https://doi.org/10.1248/bpb.b19-00481

Takashima H, Tagami T, Kato S, Pae H, Ozeki T, Shibuya Y. Three-Dimensional Printing of an Apigenin-Loaded Mucoadhesive Film for Tailored Therapy to Oral Leukoplakia and the Chemopreventive Effect on a Rat Model of Oral Carcinogenesis. Pharmaceutics. 2022; 14(8): 1575. Doi: 10.3390/pharmaceutics14081575. DOI: https://doi.org/10.3390/pharmaceutics14081575

Alali AS, Muqtader Ahmed M, Fatima F, Anwer MK, Ibnauf M, Aboudzadeh MA. Chitosan-based spray-dried solid dispersions of apigenin in a 3D printable drug delivery system. J Appl Polym Sci. 2025; 142(1):e56310. Doi: 10.1002/app.56310. DOI: https://doi.org/10.1002/app.56310

Chaudhari VS, Malakar TK, Murty US, Banerjee S. Extruded filaments derived 3D printed medicated skin patch to mitigate destructive pulmonary tuberculosis: design to delivery. Expert Opin Drug Deliv. 2021; 18(2): 301–313. Doi: 10.1080/17425247.2021.1845648. DOI: https://doi.org/10.1080/17425247.2021.1845648

Flora GD, Nayak MK. A Brief Review of Cardiovascular Diseases, Associated Risk Factors and Current Treatment Regimes. Curr Pharm Des. 2019; 25(38): 4063–4084. Doi: 10.2174/1381612825666190925163827. DOI: https://doi.org/10.2174/1381612825666190925163827

Jiang Z, Cui X, Qu P, Shang C, Xiang M, Wang J. Roles and mechanisms of puerarin on cardiovascular disease: A review. Biomed Pharmacother. 2022; 147: 112655. Doi: 10.1016/j.biopha.2022.112655. DOI: https://doi.org/10.1016/j.biopha.2022.112655

Huang M, Long L, Deng M, Yu Z, Qu H, Tan L, et al. Effectiveness and safety of Yufeng Ningxin for the treatment of essential hypertension: A protocol for systematic review and meta-analysis. Medicine (Baltimore). 2021; 100(9): e24858. Doi: 10.1097/MD.0000000000024858. DOI: https://doi.org/10.1097/MD.0000000000024858

Joshi HN, Tejwani RW, Davidovich M, Sahasrabudhe VP, Jemal M, Bathala MS, et al. Bioavailability enhancement of a poorly water-soluble drug by solid dispersion in polyethylene glycol-polysorbate 80 mixture. Int J Pharm. 2004; 269:251–258. Doi: 10.1016/j.ijpharm.2003.09.002. DOI: https://doi.org/10.1016/j.ijpharm.2003.09.002

Sheen PC, Khetarpal VK, Cariola CM, Rowlings CE. Formulation studies of a poorly water-soluble drug in solid dispersions to improve bioavailability. Int J Pharm. 1995; 118(2): 221–227. Doi: 10.1016/0378-5173(94)00366-D. DOI: https://doi.org/10.1016/0378-5173(94)00366-D

Gadkari PV, Balaraman M. Catechins: Sources, extraction and encapsulation: A review. Food Bioprod Process. 2015; 93: 122–138. Doi: 10.1016/j.fbp.2013.12.004. DOI: https://doi.org/10.1016/j.fbp.2013.12.004

Salehi B, Venditti A, Sharifi-Rad M, Kręgiel D, Sharifi-Rad J, Durazzo A, et al. The therapeutic potential of Apigenin. International Journal of Molecular Sciences. Multidisciplinary Digital Publishing Institute. 2019; 20(6): 1305. Doi: 10.3390/ijms20061305. DOI: https://doi.org/10.3390/ijms20061305

Jang JY, Sung B, Kim ND. Role of Induced Programmed Cell Death in the Chemopreventive Potential of Apigenin. Int J Mol Sci. 2022; 23(7): 3757. Doi: 10.3390/ijms23073757. DOI: https://doi.org/10.3390/ijms23073757

Lyon SM, Rossman MD. Pulmonary Tuberculosis. 2017; 5(1): 10-1128. Doi: 10.1128/microbiolspec.tnmi7-0032-2016. DOI: https://doi.org/10.1128/microbiolspec.TNMI7-0032-2016

Giller DB, Giller BD, Giller GV, Shcherbakova GV, Bizhanov AB, Enilenis II, et al. Treatment of pulmonary tuberculosis: past and present. Eur J Cardio-Thoracic Surg. 2018; 53(5): 967–972. Doi: 10.1093/ejcts/ezx447. DOI: https://doi.org/10.1093/ejcts/ezx447

Hussain A, Altamimi MA, Alshehri S, Imam SS, Shakeel F, Singh SK. Novel approach for transdermal delivery of rifampicin to induce synergistic antimycobacterial effects against cutaneous and systemic tuberculosis using a cationic nanoemulsion gel. Int J Nanomedicine. 2020; 15: 1073–1094. Doi: 10.2147/IJN.S236277. DOI: https://doi.org/10.2147/IJN.S236277

Kandemir K, Tomas M, McClements DJ, Capanoglu E. Recent advances on the improvement of quercetin bioavailability. Trends Food Sci Technol. 2022; 119: 192–200. Doi: 10.1016/j.tifs.2021.11.032. DOI: https://doi.org/10.1016/j.tifs.2021.11.032

Wang W, Sun C, Mao L, Ma P, Liu F, Yang J, et al. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci Technol. 2016; 56: 21–38. Doi: 10.1016/j.tifs.2016.07.004. DOI: https://doi.org/10.1016/j.tifs.2016.07.004

Butov DO, Zaitseva SI, Pitenko MM, Stepanenko GL, Butova TS. Morphological changes in experimental tuberculosis resulting from treatment with quercetin and polyvinylpyrrolidone. Int J Mycobacteriology. 2015; 4(4): 296–301. Doi: 10.1016/j.ijmyco.2015.08.003. DOI: https://doi.org/10.1016/j.ijmyco.2015.08.003

Sasikumar K, Ghosh AR, Dusthackeer A. Antimycobacterial potentials of quercetin and rutin against Mycobacterium tuberculosis H37Rv. 3 Biotech. 2018; 8(10): 427. Doi: 10.1007/s13205-018-1450-5. DOI: https://doi.org/10.1007/s13205-018-1450-5

Butov D, Zaitseva S, Butova T, Stepanenko G, Pogorelova O, Zhelezniakova N. Efficacy and safety of quercetin and polyvinylpyrrolidone in treatment of patients with newly diagnosed destructive pulmonary tuberculosis in comparison with standard antimycobacterial therapy. Int J Mycobacteriology. 2016; 5(4): 446–453. Doi: 10.1016/j.ijmyco.2016.06.012. DOI: https://doi.org/10.1016/j.ijmyco.2016.06.012

Lehmkemper K, Kyeremateng SO, Heinzerling O, Degenhardt M, Sadowski G. Long-Term Physical Stability of PVP- and PVPVA-Amorphous Solid Dispersions. Mol Pharm. 2017; 14(1): 157–171. Doi: 10.1021/acs.molpharmaceut.6b00763. DOI: https://doi.org/10.1021/acs.molpharmaceut.6b00763

Dos Santos J, da Silva GS, Velho MC, Beck RCR. Eudragit®: A Versatile Family of Polymers for Hot Melt Extrusion and 3D Printing Processes in Pharmaceutics. Pharmaceutics. 2021; 13(9): 1424. Doi: 10.3390/pharmaceutics13091424. DOI: https://doi.org/10.3390/pharmaceutics13091424

Agrawal AM, Dudhedia MS, Zimny E. Hot Melt Extrusion: Development of an Amorphous Solid Dispersion for an Insoluble Drug from Mini-scale to Clinical Scale. AAPS PharmSciTech. 2016; 17(1): 133–147. Doi: 10.1208/s12249-015-0425-7. DOI: https://doi.org/10.1208/s12249-015-0425-7

Tracy T, Cheng S, Wu L, Liu X, Li X. Enhancing Oral Bioavailability Using 3D Printing Technology. Oral Bioavailab Drug Deliv. 2023; 657–676. Doi: 10.1002/9781119660699.ch34. DOI: https://doi.org/10.1002/9781119660699.ch34

Shaikh R, Raj Singh T, Garland M, Woolfson A, Donnelly R. Mucoadhesive drug delivery systems. J Pharm Bioallied Sci. 2011; 3(1): 89–100. Doi: 10.4103/0975-7406.76478. DOI: https://doi.org/10.4103/0975-7406.76478

Bird D, Ravindra NM. Transdermal drug delivery and patches—An overview. Med Devices Sensors. 2020; 3(6): e10069. Doi: 10.1002/mds3.10069. DOI: https://doi.org/10.1002/mds3.10069

Vicente E, Pruneda L, Ardanaz E. Paradox of rarity: about the percentage of population affected by rare diseases. Gac Sanit. 2020; 34(6): 536–538. Doi: 10.1016/j.gaceta.2020.02.012. DOI: https://doi.org/10.1016/j.gaceta.2020.02.012

Khan H, Ullah H, Tundis R, Belwal T, Devkota HP, Daglia M, et al. Dietary Flavonoids in the Management of Huntington’s Disease: Mechanism and Clinical Perspective. eFood. 2020; 1(1): 38–52. Doi: 10.2991/efood.k.200203.001. DOI: https://doi.org/10.2991/efood.k.200203.001

Deep A, Marwaha RK, Marwaha MG, Jyoti, Nandal R, Sharma AK. Flavopiridol as cyclin dependent kinase (CDK) inhibitor: a review. New J Chem. 2018; 42(23): 18500–18507. Doi: 10.1039/C8NJ04306J. DOI: https://doi.org/10.1039/C8NJ04306J

Saydam M, Takka S. Improving the dissolution of a water-insoluble orphan drug through a fused deposition modelling 3-Dimensional printing technology approach. Eur J Pharm Sci. 2020; 152: 105426. Doi: 10.1016/j.ejps.2020.105426. DOI: https://doi.org/10.1016/j.ejps.2020.105426

Sjöholm E, Mathiyalagan R, Wang X, Sandler N. Compounding Tailored Veterinary Chewable Tablets Close to the Point-of-Care by Means of 3D Printing. Pharmaceutics. 2022; 14(7): 1339. Doi: 10.3390/pharmaceutics14071339. DOI: https://doi.org/10.3390/pharmaceutics14071339

Sjöholm E, Mathiyalagan R, Prakash DR, Lindfors L, Wang Q, Wang X, et al. 3D-Printed Veterinary Dosage Forms—A Comparative Study of Three Semi-Solid Extrusion 3D Printers. Pharmaceutics. 2020; 12(12): 1239. Doi: 10.3390/pharmaceutics12121239. DOI: https://doi.org/10.3390/pharmaceutics12121239

Scott KA, Qureshi MH, Cox PB, Marshall CM, Bellaire BC, Wilcox M, et al. A Structural Analysis of the FDA Green Book-Approved Veterinary Drugs and Roles in Human Medicine. 2020; 63(24): 15449-15482. Doi: 10.1021/acs.jmedchem.0c01502. DOI: https://doi.org/10.1021/acs.jmedchem.0c01502

Karancsi Z, Balázs A, Gálfi P, Farkas O. Flavonoids - new perspectives in the veterinary medicine. Magy Állatorvosok Lapja. 2015; 137(11): 695–704.

Khan D, Kirby D, Bryson S, Shah M, Rahman Mohammed A. Paediatric specific dosage forms: Patient and formulation considerations. Int J Pharm. 2022; 616: 121501. Doi: 10.1016/j.ijpharm.2022.121501 DOI: https://doi.org/10.1016/j.ijpharm.2022.121501

McCloskey AP, Bracken L, Vasey N, Ehtezazi T. 3D printing – an alternative strategy for pediatric medicines. Expert Rev Clin Pharmacol. 2023; 16(7): 613–6. Doi: 10.1080/17512433.2023.2233416 DOI: https://doi.org/10.1080/17512433.2023.2233416

Russi L, Del Gaudio C. 3D printed multicompartmental capsules for a progressive drug release. Ann 3D Print Med. 2021; 3: 100026. Doi: 10.1016/j.stlm.2021.100026. DOI: https://doi.org/10.1016/j.stlm.2021.100026

Awad A, Hollis E, Goyanes A, Orlu M, Gaisford S, Basit AW. 3D printed multi-drug-loaded suppositories for acute severe ulcerative colitis. Int J Pharm X. 2023; 5: 100165. Doi: 10.1016/j.ijpx.2023.100165. DOI: https://doi.org/10.1016/j.ijpx.2023.100165

Zhu C, Tian Y, Zhang E, Gao X, Zhang H, Liu N, et al. Semisolid Extrusion 3D Printing of Propranolol Hydrochloride Gummy Chewable Tablets: an Innovative Approach to Prepare Personalized Medicine for Pediatrics. AAPS PharmSciTech. 2022; 23(5): 166. Doi: 10.1208/s12249-022-02304-x. DOI: https://doi.org/10.1208/s12249-022-02304-x

Descargas

Publicado

19-03-2025

Cómo citar

1.
Heyerdahl-Viau I. Aplicación de la tecnología de impresión en 3D para la formulación farmacéutica de flavonoides. Ars Pharm [Internet]. 19 de marzo de 2025 [citado 15 de junio de 2025];66(2):247-59. Disponible en: https://revistaseug.ugr.es/index.php/ars/article/view/31923

Número

Sección

Artículos de revisión
Crossref
0
Scopus
0