Compresión y caracterización de partículas granulares de Ipomoea batatas y Artocarpus altilis en tabletas

Autores/as

DOI:

https://doi.org/10.30827/ars.v66i1.31480

Palabras clave:

Ipomoea batatas, Artocarpus altilis, Caracterización de Tabletas, Excipientes, Comprimidos

Resumen

Introducción: Los comprimidos son formas farmacéuticas sólidas de administración por vía oral, constituidas por un granulado sometido a compresión. Estos, se pueden formar a partir de partículas (excipientes e ingredientes activos) que se deforman bajo presión. Existen una serie de partículas de origen natural provenientes de productos agrícolas que son maleables y se podrían utilizar en como excipientes para la obtención de comprimidos. Sin embargo, existe una brecha de investigación en cuanto al uso de estos productos agrícolas en comprimidos. Este estudio exploró el potencial de utilizar como excipientes granulados químicamente no modificados de Ipomoea batatas y Artocarpus altilis en la obtención de comprimidos.

Método: La investigación evaluó las propiedades físicas y la solubilidad bajo diferentes condiciones, incluyendo métodos de corte, adición de aglutinantes y fuerzas de compresión. El proceso experimental incluyó secado, molienda, mezcla con aglutinante (Polivinilpirrolidona) y compactación. La caracterización de las partículas incluyó distribución de tamaño, densidad, morfología y porosidad, mientras que el análisis del material compactado se centró en la dureza, friabilidad, tiempo de desintegración y tiempo de solubilidad.

Resultados: Las partículas de I. batatas eran esféricas con un D50 de 420 µm y una porosidad del 50%-60%. Las partículas de A. altilis eran de forma irregular con un D50 de 120–200 µm y una porosidad del 75%-80%. El material compactado de I. batatas tenía una dureza >4 kgf, friabilidad <1%, desintegración de 8-15 min y solubilidad de 14-18 min. A. altilis tenía una dureza >4 kgf, friabilidad <2%, desintegración de 2,5-5 min y solubilidad de 5-9 min.

Conclusiones: La adición de aglutinante y las fuerzas de compresión redujeron la pérdida de peso y aumentaron la dureza, el tiempo de desintegración y el tiempo de solubilidad. La composición de carbohidratos (principalmente almidones) afectó significativamente el tiempo de solubilidad, mientras que la técnica de corte influyó en el tiempo de secado, pero no en el comportamiento final del producto. Este estudio demuestra la viabilidad de utilizar materiales granulares obtenidos de productos agrícolas naturales para formar productos comprimidos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Sahu RS, Jain D. Compatibility studies of montelukast with pharmaceutical excipients used in tablet formulations using thermal and chromatographic techniques. J Bioanal Biomed [Internet]. 2020;12(2):1–3, Doi: 10.37421/JBABM.2020.10.15

Rajeswari S, Prasanthi T, Sudha N, Swain RP, Panda S, Goka V. Natural polymers: a recent review. 472 Rajeswari al World J Pharm Pharm Sci [Internet]. 2017;6, Doi: 10.20959/wjpps20178-9762 DOI: https://doi.org/10.20959/wjpps20178-9762

Seema M, Chandra P, Neelkant P, Hina C, Minakshi S, Tajdar SA. A Review on Natural Plant Based Polymers: A Brilliant Pharmaceutical Excipients. Int J Food Nutr Sci. 2022;11(7).

Raghav N, Vashisth C, Mor N, Arya P, Sharma MR, Kaur R, et al. Recent advances in cellulose, pectin, carrageenan and alginate-based oral drug delivery systems. Int J Biol Macromol [Internet]. 2023;244:125357, Doi: 10.1016/j.ijbiomac.2023.125357 DOI: https://doi.org/10.1016/j.ijbiomac.2023.125357

Kringel DH, El Halal SLM, Zavareze E da R, Dias ARG. Methods for the Extraction of Roots, Tubers, Pulses, Pseudocereals, and Other Unconventional Starches Sources: A Review. Starch/Staerke. 2020;72(11–12), Doi: 10.1002/star.201900234 DOI: https://doi.org/10.1002/star.201900234

Liu G, Gu Z, Hong Y, Cheng L, Li C. Structure, functionality and applications of debranched starch: A review. Trends Food Sci Technol. 2017;63:70–9, Doi: 10.1016/j.tifs.2017.03.004 DOI: https://doi.org/10.1016/j.tifs.2017.03.004

Rajabnezhad S, Ghafourian T, Rajabi-Siahboomi A, Missaghi S, Naderi M, Salvage JP, et al. Investigation of water vapour sorption mechanism of starch-based pharmaceutical excipients. Carbohydr Polym. 2020; 238:116208, Doi: 10.1016/j.carbpol.2020.116208 DOI: https://doi.org/10.1016/j.carbpol.2020.116208

Svačinová P, Mužíková J, Ondrejček P. Comparison of Compressibility, Compactability, and Lubricant Sensitivity of Two Partially Pregelatinized Starches. Starch - Stärke [Internet]. 2020; 2000166, Doi: 10.1002/star.202000166 DOI: https://doi.org/10.1002/star.202000166

Eraga SO, Ndukwe JO, Iwuagwu MA. An investigation of the direct compression properties of pre-gelatinized African bitter yam and cassava starches in acetylsalicylic acid tablet formulations. J Appl Sci Environ Manag [Internet]. 2017;21(5):855, Doi: 10.4314/jasem.v21i5.10 DOI: https://doi.org/10.4314/jasem.v21i5.10

Rodney S, Adebayo A, Riley CK. The application of pregelatinized starch extracted from [Artocarpus altilis Parkinson Fosberg] Breadfruit as a direct compression binder in tablets. Tropical Agriculture. 2016;93(5).

Nwachukwu N, Ubieko EA. Disintegrant Properties of Native Starches obtained from Cassava, Sweet Potato and Corn in Ibuprofen Tablet Formulations. J Drug Deliv Ther. 2020;10(5):264–73, Doi: 10.22270/jddt.v10i5.4324 DOI: https://doi.org/10.22270/jddt.v10i5.4324

Orsi V, Vila M, Hanai-Yoshida V, Chaud M, Barcao V. Bran of cassava starch flour and bran of cassava flour as potential tablet excipients. Ars Pharm [Internet]. 2019;60(4):205–11. Doi: 10.30827/ars.v60i4.9385 DOI: https://doi.org/10.30827/ars.v60i4.9385

Sun H, Wang X, Wang J, Shi G, Chen L. Influence of the formula on the properties of a fast dispersible fruit tablet made from mango, Chlorella, and cactus powder. Food Sci Nutr [Internet]. 2019;8(1):479–88. Doi: 10.1002/fsn3.1330 DOI: https://doi.org/10.1002/fsn3.1330

Osorio-Fierros A, Cronin K, Ring D, Méndez-Zavala A, Morales-Oyervides L, Montañez JC. Influence of granulation process parameters on food tablet properties formulated using natural powders (Opuntia ficus and Chlorella spp.). Powder Technol. 2017 Jul 15;317:281–6, Doi: j.powtec.2017.04.057 DOI: https://doi.org/10.1016/j.powtec.2017.04.057

Saifullah M, Yusof YA, Chin NL, Aziz MG. Physicochemical and flow properties of fruit powder and their effect on the dissolution of fast dissolving fruit powder tablets. Powder Technol. 2016 Nov 1;301:396–404, Doi: 10.1016/j.powtec.2016.06.035 DOI: https://doi.org/10.1016/j.powtec.2016.06.035

Kurian AE, Prabhakara Rao PG, Nagender A, Srinivasulu K, Sathiya Mala K. Studies on development of instant pumpkin soup tablets and evaluation of storage stability. Indian J Tradit Knowl. 2021;20(2):486–91. DOI: https://doi.org/10.56042/ijtk.v20i2.26695

Zea LP, Yusof YA, Aziz MG, Ling CN, Amin NAM. Compressibility and dissolution characteristics of mixed fruit tablets made from guava and pitaya fruit powders. Powder Technol. 2013;247:112–9, Doi: j.powtec.2013.06.032 DOI: https://doi.org/10.1016/j.powtec.2013.06.032

Adebayo SA, Brown-Myrie E, Itiola OA. Comparative disintegrant activities of breadfruit starch and official corn starch. Powder Technol. 2008;181(2):98–103, Doi: j.powtec.2006.12.013 DOI: https://doi.org/10.1016/j.powtec.2006.12.013

U.S. Department of Agriculture. FoodData Central: Sweet potato, raw, unprepared (Includes foods for USDA’s Food Distribution Program [Internet]. U.S. Department of Agriculture. 2019

U.S. Department of Agriculture. FoodData Central: Breadfruit, raw [Internet]. U.S. Department of Agriculture. 2019

Etudaiye HA, Oti E, Aniedu C, Omodamiro MR. Utilization of sweet potato starches and flours as composites with wheat flours in the preparation of confectioneries. African J Biotechnol [Internet]. 2015;14(1):17–22, Doi: 10.5897/AJB12.2651 DOI: https://doi.org/10.5897/AJB12.2651

Patria A, Husna N El, Lubis YM, Novita M. Physically modified of sweet potato flour (Ipomea batatas) by variation of steaming time and drying method. 2013; 3(2)

Tunkumgnen Bayor M, Tuffour E, Lambon PS. Evaluation of Starch From New Sweet Potato Genotypes for use as A Pharmaceutical Diluent, Binder or Disintegrant. J Appl Pharm Sci [Internet]. 2013;3(8):17–23, Doi: 10.7324/JAPS.2013.38.S4 DOI: https://doi.org/10.7324/JAPS.2013.38.S4

Olanrewaju Arinola S, Omowaye-Taiwo OA. Physicochemical Properties of Breadfruit-Bambara Groundnut Flour Blends and Sensory Acceptability of Their Dumpling Dough. Food Sci Qual Manag. 2020, Doi: 10.7176/FSQM/95-05 DOI: https://doi.org/10.7176/FSQM/95-05

Ayorinde JO, Odeniyi B-F MA. Material and Compression Properties of Native and Co-Processed Breadfruit Starches. Niger J Pharm Res [Internet]. 2017;12(1):21–9.

Liew K Bin, Peh KK. Investigation on the effect of polymer and starch on the tablet properties of lyophilized orally disintegrating tablet. Arch Pharm Res [Internet]. 2021;44(8):1–10, Doi: 10.1007/s12272-014-0542-y DOI: https://doi.org/10.1007/s12272-014-0542-y

Toshev K, Endekovska I, Kostovska M, Angelovska V, Stojanovska NA. Impact of qualitative formulation variables on critical quality attributes of tablets with fast disintegration. Maced Pharm Bull [Internet]. 2022;68(1):229–30, Doi: 10.1081/ddc-100102279 DOI: https://doi.org/10.33320/maced.pharm.bull.2022.68.03.109

Alebiowu G, Itiola OA. The effects of starches on mechanical properties of paracetamol tablet formulations. I. Pregelatinization of starch binders. Acta Pharm [Internet]. 2003;53(3):231–7

Chitedze J, Monjerezi M, Saka K, Steenkamp J. Binding Effect of Cassava Starches on the Compression and Mechanical Properties of Ibuprofen Tablets. J Appl Pharm Sci. 2012;2(4):31–7, Doi: 10.7324/JAPS.2012.2402 DOI: https://doi.org/10.7324/JAPS.2012.2402

Apeji YE, Kaigama RT, Ibrahim SH, Anyebe SN, Abdussalam AO, Oyi AR. Tableting Performance of Maize and Potato Starches Used in Combination as Binder/Disintegrant in Metronidazole Tablet Formulation. Turkish J Pharm Sci [Internet]. 2022;19(5):513–20. Doi: 10.4274/tjps.galenos.2021.47855 DOI: https://doi.org/10.4274/tjps.galenos.2021.47855

Adjei FK, Osei YA, Kuntworbe N, Ofori-Kwakye K. Evaluation of the Disintegrant Properties of Native Starches of Five New Cassava Varieties in Paracetamol Tablet Formulations. J Pharm [Internet]. 2017;1–9, Doi: 10.1155/2017/2326912 DOI: https://doi.org/10.1155/2017/2326912

CEM-Process Control. Moisture Analysis in the Pharmaceutical Industry [Internet]. 2019.

Nokhodchi AJ. The effect of storage conditions on the physical stability of tablets. Pharm Technol Eur [Internet]. 2007.

Kurakula M, Rao GSNK. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J Drug Deliv Sci Technol [Internet]. 2020;60:102046, Doi: 10.1016/j.jddst.2020.102046 DOI: https://doi.org/10.1016/j.jddst.2020.102046

Velázquez-González K, Ramírez-Flores E, Villafuerte-Robles L. Influence of different types of lactose on powder flow and tablets dissolution. J Appl Pharm Sci [Internet]. 2015;5,(9):089–96. Doi: 10.7324/JAPS.2015.50916 DOI: https://doi.org/10.7324/JAPS.2015.50916

Nakamura S, Ito N, Sakurada A, Sakamoto T. Effects of Granulated Lactose Characteristics and Lubricant Blending Conditions on Tablet Physical Properties in Direct Powder Compression. Chem Pharm Bull (Tokyo) [Internet]. 2023;71(9):687–94, Doi: 10.1248/cpb.c23-00262 DOI: https://doi.org/10.1248/cpb.c23-00262

Özalp Y, Onayo MM, Jiwa N. Evaluation of Lactose-Based Direct Tableting Agents’ Compressibility Behavior Using a Compaction Simulator. Turkish J Pharm Sci [Internet]. 2020;17(4):367–71, Doi: 10.4274/tjps.galenos.2019.94840 DOI: https://doi.org/10.4274/tjps.galenos.2019.94840

Renee. Tablet Evaluation – Pharmaceutics Pharmaceutical Apparatus Material [Internet]. 2019.

Mueen Mubeen A, Banu RU. Comparative standardization studies of marketed Polyherbal tablets. Int J Multidiscip Res Growth Eval [Internet]. 2023; 7(2), Doi: 10.54660/.IJMRGE.2023.4.2.346-350 DOI: https://doi.org/10.54660/.IJMRGE.2023.4.2.346-350

Odunayo AB, Kayode FI, Ayodeji Benjamin A, Adekola AI, Ruth OO, Fasuba I, et al. Evaluation of the Binding Property of Some Binders in Metronidazole Tablet Formulation. 2021;7(2):22, Doi: 10.11648/j.ijpc.20210702.11 DOI: https://doi.org/10.11648/j.ijpc.20210702.11

saac JA, Hayatu GI, John JE, Ekere KE, Daburi A, Omachoko SO, et al. Quality assessment of brands of prednisolone (5 mg) tablets marketed in abuja metropolis of Nigeria. Dissolution Technol. 2021 Jan;28(1):24–31, Doi: 10.14227/DT280121P24 DOI: https://doi.org/10.14227/DT280121P24

United States Pharmacopeia. <1216> Tablet Friability. United States Pharmacopeial Convention. Rockville, Maryland; 2016

United States Pharmacopeia. <701> Disintegration. United States Pharmacopeial Convention. Rockville, Maryland; 2019

Food and Drug Administration, U.S. Department of Health and Human Services, Center for Drug Evaluation and Research (CDER). Dissolution Testing and Acceptance Criteria for Immediate-Release Solid Oral Dosage Form Drug Products Containing High Solubility Drug Substances Guidance for Industry. 2018

Markl D, Zeitler JA. A Review of Disintegration Mechanisms and Measurement Techniques. Pharm Res [Internet]. 2017;34(5):890. Doi: 10.1007/s11095-017-2129-z DOI: https://doi.org/10.1007/s11095-017-2129-z

Descargas

Publicado

20-12-2024

Cómo citar

1.
Torrens Sotomayor L, Velazquez-Figueroa C. Compresión y caracterización de partículas granulares de Ipomoea batatas y Artocarpus altilis en tabletas. Ars Pharm [Internet]. 20 de diciembre de 2024 [citado 3 de marzo de 2025];66(1):63-79. Disponible en: https://revistaseug.ugr.es/index.php/ars/article/view/31480

Número

Sección

Artículos Originales