Nanobots: El futuro de la entrega de medicamentos
DOI:
https://doi.org/10.30827/ars.v65i4.31068Palabras clave:
Nanotecnología, Nanobots, Entrega de medicamentos, Precisión, Células infectadasResumen
Introducción: Desde la introducción de la nanorobótica, la disciplina de la química medicinal ha experimentado un desarrollo exponencial en los usos de la nanotecnología. Uno de los usos más potenciales de la nanotecnología es la creación de nanobots, que se pueden aplicar a una variedad de industrias como la entrega de medicamentos, imágenes médicas e incluso los beneficios de los nanobots incluyen su pequeño tamaño, peso ligero, gran flexibilidad, alta sensibilidad y gran relación empuje-peso. Los nanobots tienen varios usos y están siendo investigados en muchos ámbitos. El objetivo de esta revisión es proporcionar una visión general del campo en rápido desarrollo de la nanorobótica de la química medicinal y sus posibles aplicaciones en la detección, el tratamiento y la prevención de enfermedades.
Método: Se consideran y utilizan varios artículos y boletines como referencia para recopilar información sobre nano y microbots y se redactó una breve información de acuerdo con su uso en la entrega de medicamentos.
Resultados: Se tuvieron en cuenta varios artículos de revisión para proporcionar un conocimiento profundo sobre la utilización de nano y microrobots en la administración de fármacos y el tratamiento de varias enfermedades.
Conclusiones: Las partes principales de los robots y los muchos tipos de nanobots se tratan por separado. La perspectiva futura y las iniciativas que pueden ayudarnos a hacer realidad nuestros sueños de crear pequeños robots que puedan moverse dentro de nuestros cuerpos, administrar medicamentos con una precisión antes inalcanzable, localizar y eliminar células infectadas y, lo más importante, hacer realidad la ciencia ficción.
Descargas
Citas
T Das, S Sultana. Multifaceted applications of micro/ nanorobots in pharmaceutical drug delivery systems: a comprehensive review. Futur J Pharm Sci. 2024; 10(2): 1-10. Doi: 10.1186/s43094-023-00577-y. DOI: https://doi.org/10.1186/s43094-023-00577-y
Vargason AM, Anselmo AC, Mitragotri S (2021) The evolution of commercial drug delivery technologies. Nat Biomed Eng 5(9):951–967. Doi: 10.1038/s41551-021-00698-w. DOI: https://doi.org/10.1038/s41551-021-00698-w
Parida S, Bari AR. Nanobots for Medicinal Applications. Austin J Nanomed Nanotechnol. 2023; 11(1): 1067. DOI: https://doi.org/10.26420/austinjnanomednanotechnol.2023.1067
Jain KK. Advances in the field of nanooncology. BMC Med. 2010; 8: 83. Doi: 10.1186/1741-7015-8-83. DOI: https://doi.org/10.1186/1741-7015-8-83
Misra R, Acharya S, Sahoo SK. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug DiscovToday. 2010; 15: 842-850. Doi: 10.1186/1741-7015-8-83. DOI: https://doi.org/10.1016/j.drudis.2010.08.006
Bharali DJ, Mousa SA. Emerging nanomedicines for early cancer detection and improved treatment: current perspective and future promise. Pharmacol Ther. 2010; 128: 324-335. Doi: 10.1016/j.pharmthera.2010.07.007. DOI: https://doi.org/10.1016/j.pharmthera.2010.07.007
Matsue T. Bioimaging with micro/nanoelectrode systems. Anal Sci. 2013; 29: 171-9. Doi: 10.2116/analsci.29.171. DOI: https://doi.org/10.2116/analsci.29.171
Chi X, Huang D, Zhao Z, Zhou Z, Yin Z, et al. Nanoprobes for in vitro diagnostics of cancer and infectious diseases. Biomaterials. 2012; 33: 189-206. Doi: 10.1016/j.biomaterials.2011.09.032. DOI: https://doi.org/10.1016/j.biomaterials.2011.09.032
Choi YE, Kwak JW, Park JW. Nanotechnology for early cancer detection. Sensors (Basel). 2010; 10: 428-55. Doi: 10.3390/s100100428. DOI: https://doi.org/10.3390/s100100428
Sivasankar M, Durairaj RB. Brief Review on Nano Robots in Bio Medical Applications. J of Advanced Robot Automat. 2012; 1: 101. Doi: 10.4172/ 2168-9695.1000101 .
Mehra P, Nabhi K. A Nanorobotics - The Changing Face of Dentistry. IJSR. 2016; 5: 192-197. DOI: https://doi.org/10.21275/v5i3.NOV161810
Nandkishor K, Swapnil P, Rajeshwar K, et al. Review on application of nanorobots in health care. World J pharmacy and pharmaceutical sciences. 2014; 3: 472-480.
Mahesh Kumar P, Shreya K, Nikhil A, Amber M. Nanorobotics based drug delivery system: Recent developments and future prospects. IJCRT. 2023; 11(1): c630- c640.
Sanjay S. Patel, Poojan N. Patel. A Brief Review on Nanorobotics Applications in Medicine and Future Prospects. Asian Journal of Research in Pharmaceutical Sciences. 2023; 13(1):19-8. Doi: 10.52711/2231-5659.2023.00004. DOI: https://doi.org/10.52711/2231-5659.2023.00004
M Suhail, A Khan, M Abdur Rahim, A Naeem, M Fahad, S F Badshah, A Jabar & Ashok Kumar J. Micro and nanorobot-based drug delivery: an overview. Journal of Drug Targeting. 2022; 30(4): 349-358. Doi: 10.1080/1061186X.2021.1999962. DOI: https://doi.org/10.1080/1061186X.2021.1999962
Chen W, Sun M, Fan X, et al. Magnetic/pH-sensitive doublelayer microrobots for drug delivery and sustained release. Appl Mater Today. 2020;19:100583. DOI: https://doi.org/10.1016/j.apmt.2020.100583
Nguyen HV, Faivre V. Targeted drug delivery therapies inspired by natural taxes. J Control Release. 2020;322: 439–456. DOI: https://doi.org/10.1016/j.jconrel.2020.04.005
Sachdeva S, Mani A, Mani SA, et al. Nano-robotics: the future of health and dental care. IP Int J Periodontol Implantol. 2021;6(1):6–10. DOI: https://doi.org/10.18231/j.ijpi.2021.002
Znidarsic A, Baggia A, Werber B. Attitudes toward microchip implant in groups pro and con its insertion for healthcare purposes. 2020. BLED 2020 Proceedings 1; [cited 2021 Oct 28]. Available from: https://aisel.aisnet.org/bled2020/1.
Kumar JP, Sankaranarayanan R, Sujana JA, et al. Nanomedicine manufacturing and applications: advantages and disadvantages of nanodevices. Amsterdam: Elsevier; 2021. DOI: https://doi.org/10.1016/B978-0-12-820773-4.00015-9
Manjunath A, Kishore V. The promising future in medicine: nanorobots. Biomed Sci Eng. 2014;2(2):42–47.
Schalley CA, Beizai K, Vogtle F. On the way to rotaxane-based molecular motors: studies in molecular mobility and topological chirality. Acc Chem Res. 2001;34(6):465-76. Doi: 10.1021/ar000179i. DOI: https://doi.org/10.1021/ar000179i
Bhushan B. Biomimetics: lessons from nature–an overview. Philos Trans A Math Phys Eng Sci. 2009;367(1893):1445-86. Doi: 10.1098/rsta.2009.0011, PMID 19324719. DOI: https://doi.org/10.1098/rsta.2009.0011
Cho KJ, Koh JS, Kim S, Chu W, Hong Y, Ahn S. Review of manufacturing processes for soft biomimetic robots. Int J Precis Eng Manuf. 2009;10(3):171-81. Doi: 10.1007/s12541- 009-0064-6. DOI: https://doi.org/10.1007/s12541-009-0064-6
Chu WS, Lee KT, Song SH, Han M, Lee J, Kim H. Review of biomimetic underwater robots using smart actuators. Int J Precis Eng Manuf. 2012;13(7):1281-92. Doi: 10.1007/s12541- 012-0171-7. DOI: https://doi.org/10.1007/s12541-012-0171-7
Ghosh A, Fischer P. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 2009;9(6):2243-5. Doi: 10.1021/nl900186w. DOI: https://doi.org/10.1021/nl900186w
Zhang D, Liu S, Guan J and Mou F, “Motile-targeting” drug delivery platforms based on micro/nanorobots for tumor therapy. Front. Bioeng. Biotechnol. 2022 ; 10:1002171. Doi: 10.3389/fbioe.2022.1002171. DOI: https://doi.org/10.3389/fbioe.2022.1002171
Dai, L., Liu, J., Luo, Z., Li, M., and Cai, K. (2016). Tumor therapy: targeted drug delivery systems. J. Mat. Chem. B 4 (42), 6758–6772. Doi: 10.1039/C6TB01743F. DOI: https://doi.org/10.1039/C6TB01743F
Wicki, A., Witzigmann, D., Balasubramanian, V., and Huwyler, J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release. 2015; 138–157. Doi: 10.1016/j.jconrel.2014.12.030. DOI: https://doi.org/10.1016/j.jconrel.2014.12.030
Mengyi Hu, Xuemei Ge, Xuan Chen, Wenwei Mao, Xiuping Qian, Wei-En Yuan. Micro/Nanorobot: A Promising Targeted Drug Delivery System. Pharmaceutics. 2020; 12(7): 665. Doi: 10.3390/pharmaceutics12070665. DOI: https://doi.org/10.3390/pharmaceutics12070665
Gautham G, Y Maddahi, K Zareinia. A Brief Review on Challenges in Design and Development of Nanorobots for Medical Applications. Applied science. 2021; 11: 10385. Doi: 10.3390/app112110385. DOI: https://doi.org/10.3390/app112110385
Ammi, M.; Frémont, V.; Ferreira, A. Automatic camera-based microscope calibration for a telemicromanipulation system using a virtual pattern. IEEE Trans. Robot. 2009; 25(1): 184–191. Doi: 10.1109/TRO.2008.2006866. DOI: https://doi.org/10.1109/TRO.2008.2006866
Wang, B., Zhang, Y.,Zhang L. Recent progress on micro-and nano-robots: Towards in vivo tracking and localization. Quant. Imaging Med. Surg. 2018; 8, 461. Doi: 10.21037/qims.2018.06.07. DOI: https://doi.org/10.21037/qims.2018.06.07
Azizian, M.; Najmaei, N.; Khoshnam, M.; Patel, R. Visual servoing in medical robotics: A survey. Part II: Tomographic imaging modalities–techniques and applications. Int. J. Med Robot. Comput. Assist. Surg. 2015; 11: 67–79. Doi: 10.1002/rcs.1575. DOI: https://doi.org/10.1002/rcs.1575
Flückiger, M.; Neild, A.; Nelson, B.J. Optimization of receiver arrangements for passive emitter localization methods. Ultrasonics 2012, 52, 447–455. Doi: 10.1016/j.ultras.2011.03.012. DOI: https://doi.org/10.1016/j.ultras.2011.03.012
Liang, Z.; Teal, D.; Fan, D.E. Light programmable micro/nanomotors with optically tunable in-phase electric polarization. Nat. Commun. 2019; 10: 5275. Doi: 10.1038/s41467-019-13255-6. DOI: https://doi.org/10.1038/s41467-019-13255-6
R. Maheswari, S. Sheeba Rani, V. Gomathy, P. Sharmila, Cancer detecting nanobot using positron emission tomography. Procedia computer science. 2018;133: 315-322. Doi: https://doi: 10.1016/j.procs.2018.07.039. DOI: https://doi.org/10.1016/j.procs.2018.07.039
S. Mali. Nanotechnology for surgeons. Indian journal of surgery. 2013; 75(6):485-492. Doi: 10.1007/s12262-012-0726- y. DOI: https://doi.org/10.1007/s12262-012-0726-y
Y. Zhang, Y. Zhang, Y. Han, X. Gong. Micro nanorobots for medical diagnosis and disease treatment. Micromachines. 2022; 13(5): 648. Doi: 10.3390/mi13050648. DOI: https://doi.org/10.3390/mi13050648
A. Pedram, H.N. Pishkenari, Smart micro nanorobotic systems for gene delivery. Curr Gen Ther. 2017; 17(2): 73-79. Doi: 10.2174/1566523217666170511111000. DOI: https://doi.org/10.2174/1566523217666170511111000
N.J. Shetty, P. Swati, K. David, Nanorobots: Future in dentistry. 2013; 25(2): 49-52. Doi. DOI: https://doi.org/10.1016/j.sdentj.2012.12.002
Y. Feng, M. An, Y. Liu, MT. Sarwar, H. Yang,. Advances in chemically powered micro/nanorobots for biological applications: A review. Advanced functional materials. 2022. Doi: 10.1002/adfm.202209883. DOI: https://doi.org/10.1002/adfm.202209883
Elbialy NS, Fathy MM, Khalil WM. Doxorubicin loaded magnetic gold nanoparticles for in-vivo targeted drug delivery. Int J Pharm. 2015; 490(1–2):190–199. Doi: 10.1016/j.ijpharm.2015.05.032. DOI: https://doi.org/10.1016/j.ijpharm.2015.05.032
Dilnawaz F, Singh A, Mewar S, Sharma U, Jagannathan NR, Sahoo SK. The transport of non-surfactant based paclitaxel loaded magnetic nanoparticles across the blood brain barrier in a rat model. Biomaterials. 2012; 33(10):2936–2951. Doi: 10.1016/j.biomaterials.2011.12.046. DOI: https://doi.org/10.1016/j.biomaterials.2011.12.046
Ha Y-J, Lee S-M, Mun CH, Kim HJ, Bae Y, Lim J-H et al. Methotrexateloaded multifunctional nanoparticles with near-infrared irradiation for the treatment of rheumatoid arthritis. Arthritis Res Therapy. 2020; 22(1):1. Doi: 10.1186/s13075-020-02230-y. DOI: https://doi.org/10.1186/s13075-020-02230-y
Mohammadpour F, Kamali H, Gholami L, McCloskey AP, Kesharwani P, Sahebkar A. Solid lipid nanoparticles: a promising tool for insulin delivery. Expert Opin Drug Deliv. 2022; 19(12):1577–1595. Doi: 10.1080/17425247.2022.2138328. DOI: https://doi.org/10.1080/17425247.2022.2138328
Hu Y. Self-assembly of DNA molecules: towards DNA nanorobots for biomedical applications. Cyborg Bionic Syst. 2021. Doi: 10.34133/2021/9807520. DOI: https://doi.org/10.34133/2021/9807520
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Rama Rao Tadikonda

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos que se publican en esta revista están sujetos a los siguientes términos en relación a los derechos patrimoniales o de explotación:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, la cual se distribuirá con una licencia Creative Commons BY-NC-SA 4.0 que permite a terceros reutilizar la obra siempre que se indique su autor, se cite la fuente original y no se haga un uso comercial de la misma.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la fuente original de su publicación.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en repositorios institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).