Flavononas cítricas en formulaciones basadas en nanotecnología para el tratamiento de la piel

Autores/as

DOI:

https://doi.org/10.30827/ars.v65i1.29433

Palabras clave:

sistemas de liberación de fármacos; nanopartículas; flavonoides; Citrus

Resumen

Introducción: Las flavononas muestran una aplicación potencial en el tratamiento de trastornos de la piel, cuyo rendimiento puede mejorarse mediante el uso de nanoportadores lipídicos y poliméricos. En esta revisión, se analiza un enfoque reciente con respecto a los nano-portadores que contienen naringina, naringenina, hesperidian o hesperitina para aplicación cutánea.

Método: Esta revisión aborda las publicaciones de los últimos 6 años sobre nanosistemas que contienen flavononas cítricas para aplicaciones cutáneas. Los artículos se seleccionaron mediante la búsqueda en base de datos Scopus de nanosistemas que contienen hesperidina, hesperitina, naringina o naringenina para aplicación cutánea, artículos de investigación escritos en inglés y publicados entre 2018 y 2023, y abordando la penetración de la piel o evaluación biológica.

Resultados: La mayoría de los artículos emplearon sistemas lipídicos como nano-portadores. La naringenina fue la flavonona más utilizada. En relación con los beneficios para la piel, se destacan la mejora de la cicatrización de heridas, el tratamiento de la dermatitis atópica y las enfermedades relacionadas con el estrés oxidativo. A pesar de los probables beneficios, el desarrollo de nanomedicinas de origen vegetal es complejo, lo que impone limitaciones al desarrollo de nuevos productos farmacéuticos. Además, se han demostrado el potencial de las flavononas en el tratamiento del cáncer de piel.

Conclusiones: Se emplean portadores lipídicos, poliméricos y nanohíbridos para administrar flavanonas. Debido a sus actividades antioxidantes y antiinflamatorias, las flavanonas tienen aplicaciones potenciales en el tratamiento de diferentes trastornos de la piel. Por lo tanto, existe una aplicación prometedora de las flavanonas para mejorar la salud humana, principalmente con su carga en nanoportadores.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Júlia Scherer Santos, Federal University of Juiz de Fora

Pharmacist. PhD in Pharmaceutical Nanotechology. Specialist in Cosmetology. Experience as professor. I work in the following areas: nanotechnology, cosmetic, aesthetics.

Citas

Ma G, Zhang L, Sugiura M, Kato M. Citrus and health. In: The Genus Citrus. Elsevier; 2020. p. 495–511. doi: 10.1016/C2016-0-02375-6

Zahr S, Zahr R, El Hajj R, Khalil M. Phytochemistry and biological activities of Citrus sinensis and Citrus limon: an update. J Herb Med. 2023;41:100737. doi: 10.1016/j.hermed.2023.100737

Martins RC, Leonel S, Souza JMA, Lima GPP, Leonel M, Putti FF, et al. Profile of Bioactive Compounds in Orange Juice Related to the Combination of Different Scion/Rootstocks, Packaging and Storage. Horticulturae. 2023;9(3):347. doi: 10.3390/horticulturae9030347.

Oliveira da Silva L, Assunção Ferreira MR, Lira Soares LA. Nanotechnology Formulations Designed with Herbal Extracts and Their Therapeutic Applications – A Review. Chem Biodivers. 2023;20(8):e202201241 doi: https: 10.1002/cbdv.202201241

Procházková D, Boušová I, Wilhelmová N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia. 2011;82(4):513–23. doi: 10.1016/j.fitote.2011.01.018

Sebghatollahi Z, Ghanadian M, Agarwal P, Ghaheh HS, Mahato N, Yogesh R, et al. Citrus Flavonoids: Biological Activities, Implementation in Skin Health, and Topical Applications: A Review. ACS Food Sci Technol. 2022 Sep 16;2(9):1417–32. doi:10.1021/acsfoodscitech.2c00165.

Salvioni L, Morelli L, Ochoa E, Labra M, Fiandra L, Palugan L, et al. The emerging role of nanotechnology in skincare. Adv Colloid Interface Sci. 2021;293:102437. doi: 10.1016/j.cis.2021.102437.

Tsai MJ, Huang Y Bin, Fang JW, Fu YS, Wu PC. Preparation and evaluation of submicron-carriers for naringenin topical application. Int J Pharm. 2015;481(1–2):84–90. doi: 10.1016/j.ijpharm.2015.01.034.

Romero GB, Chen R, Keck CM, Müller RH. Industrial concentrates of dermal hesperidin smartCrystals® - Production, characterization & long-term stability. Int J Pharm. 2015;482(1–2):54–60. doi: 10.1016/j.ijpharm.2014.11.039.

Tsai MJ, Huang Y Bin, Fang JW, Fu YS, Wu PC. Preparation and characterization of naringenin-loaded elastic liposomes for topical application. PLoS One. 2015;10(7):1–12. doi: 10.1371/journal.pone.0131026.

Farzaei MH, Derayat P, Pourmanouchehri Z, Kahrarian M, Samimi Z, Hajialyani M, et al. Characterization and evaluation of antibacterial and wound healing activity of naringenin-loaded polyethylene glycol/polycaprolactone electrospun nanofibers. J Drug Deliv Sci Technol. 2023;81:104182. doi: 10.1016/j.jddst.2023.104182.

Akrawi SH, Gorain B, Nair AB, Choudhury H, Pandey M, Shah JN, et al. Development and optimization of naringenin-loaded chitosan-coated nanoemulsion for topical therapy in wound healing. Pharmaceutics. 2020;12(9):1–23. doi: 10.3390/pharmaceutics12090893.

Taymouri S, Hashemi S, Varshosaz J, Minaiyan M, Talebi A. Fabrication and evaluation of hesperidin loaded polyacrylonitrile/polyethylene oxide nanofibers for wound dressing application. J Biomater Sci Polym. 2021;32(15):1944–65. doi: 10.1080/09205063.2021.1952380.

Jangde R, Elhassan GO, Khute S, Singh D, Singh M, Sahu RK, et al. Hesperidin-Loaded Lipid Polymer Hybrid Nanoparticles for Topical Delivery of Bioactive Drugs. Pharmaceuticals. 2022;15(2). doi: 10.3390/ph15020211.

Ren X, Hu Y, Chang L, Xu S, Mei X, Chen Z. Electrospinning of antibacterial and anti-inflammatory Ag@hesperidin core-shell nanoparticles into nanofibers used for promoting infected wound healing. Regen Biomater. 2022;9: rbac012. doi:10.1093/rb/rbac012.

Gupta P, Sheikh A, Kesharwani P, Abourehab MAS. Amelioration of Full-Thickness Wound Using Hesperidin Loaded Dendrimer-Based Hydrogel Bandages. Biosensors. 2022;12(7). doi: 10.3390/bios12070462.

Trombino S, Servidio C, Laganà AS, Conforti F, Marrelli M, Cassano R. Viscosified solid lipidic nanoparticles based on naringenin and linolenic acid for the release of cyclosporine a on the skin. Molecules. 2020;25(15). doi: 10.3390/molecules25153535.

Joshi H, Hegde AR, Shetty PK, Gollavilli H, Managuli RS, Kalthur G, et al. Sunscreen creams containing naringenin nanoparticles: Formulation development and in vitro and in vivo evaluations. Photodermatol Photoimmunol Photomed. 2018;34(1):69–81. doi: 10.1111/phpp.12335.

Parashar P, Pal S, Dwivedi M, Saraf SA. Augmented Therapeutic Efficacy of Naringenin Through Microemulsion-Loaded Sericin Gel Against UVB-Induced Photoaging. AAPS PharmSciTech. 2020;21(6). doi: 10.1208/s12249-020-01766-1.

George D, Maheswari PU, Begum KMMS. Cysteine conjugated chitosan based green nanohybrid hydrogel embedded with zinc oxide nanoparticles towards enhanced therapeutic potential of naringenin. React Funct Polym. 2020;148. doi: 10.1016/j.reactfunctpolym.2020.104480.

Stanisic D, Liu LHB, Dos Santos R V., Costa AF, Durán N, Tasic L. New sustainable process for hesperidin isolation and anti-ageing effects of hesperidin nanocrystals. Molecules. 2020;25(19):1–18. doi: 10.3390/molecules25194534.

Gollavilli H, Hegde AR, Managuli RS, Bhaskar KV, Dengale SJ, Reddy MS, et al. Naringin nano-ethosomal novel sunscreen creams: Development and performance evaluation. Colloids Surfaces B Biointerfaces. 2020;193:111122. doi: 10.1016/j.colsurfb.2020.111122.

Pleguezuelos-Villa M, Mir-Palomo S, Díez-Sales O, Buso MAOV, Sauri AR, Nácher A. A novel ultradeformable liposomes of Naringin for anti-inflammatory therapy. Colloids Surfaces B Biointerfaces. 2018;162:265–70. doi: 10.1016/j.colsurfb.2017.11.068.

Vaz VM, Jitta SR, Verma R, Kumar L. Hesperetin loaded proposomal gel for topical antioxidant activity. J Drug Deliv Sci Technol. 2021;66:102873. Available from: doi: 10.1016/j.jddst.2021.102873.

Sander M, Sander M, Burbidge T, Beecker J. The efficacy and safety of sunscreen use for the prevention of skin cancer. Cmaj. 2020;192(50):E1802–8. doi: 10.1503/cmaj.201085.

Yeo E, Yew Chieng CJ, Choudhury H, Pandey M, Gorain B. Tocotrienols-rich naringenin nanoemulgel for the management of diabetic wound: Fabrication, characterization and comparative in vitro evaluations. Curr Res Pharmacol Drug Discov. 2021;2:100019. doi: 10.1016/j.crphar.2021.100019.

Kim TH, Kim GD, Ahn HJ, Cho JJ, Park YS, Park CS. The inhibitory effect of naringenin on atopic dermatitis induced by DNFB in NC/Nga mice. Life Sci. 2013;93(15):516–24. Available from: doi: 10.1016/j.lfs.2013.07.027.

Alalaiwe A, Lin CF, Hsiao CY, Chen EL, Lin CY, Lien WC, et al. Development of flavanone and its derivatives as topical agents against psoriasis: The prediction of therapeutic efficiency through skin permeation evaluation and cell-based assay. Int J Pharm. 2020;581:119256. doi:10.1016/j.ijpharm.2020.119256.

Vaz S, Silva R, Amaral MH, Martins E, Sousa Lobo JM, Silva AC. Evaluation of the biocompatibility and skin hydration potential of vitamin E-loaded lipid nanosystems formulations: In vitro and human in vivo studies. Colloids Surfaces B Biointerfaces. 2019;179:242–9. doi: 10.1016/j.colsurfb.2019.03.036.

Scherer Santos J, Pereira Gonzatto M. Citrus Essential Oils and Nanosystems towards Skin Delivery. In: Mateus Pereira Gonzatto, Júlia Scherer Santos, editors. Citrus Research - Horticultural and Human Health Aspects. 1st ed. London: IntechOpen; 2023. p. 109-213. doi: 10.5772/intechopen.110406

Michalak M. Plant-Derived Antioxidants: Significance in Skin Health and the Ageing Process. Int J Mol Sci. 2022;23(2):8–12. doi: 10.3390/ijms23020585.

Ganceviciene R, Liakou AI, Theodoridis A, Makrantonaki E, Zouboulis CC. Skin anti-aging strategies. Dermatoendocrinol. 2012 Jul;4(3):308–19. doi: 10.4161/derm.22804.

Perugini P, Bonetti M, Cozzi AC, Colombo GL. Topical Sunscreen Application Preventing Skin Cancer: Systematic Review. Cosmetics. 2019 Jul 11;6(3):42. doi: 10.3390/cosmetics6030042.

Burgess JL, Wyant WA, Abdo Abujamra B, Kirsner RS, Jozic I. Diabetic Wound-Healing Science. Medicina. 2021;57(10):1072. doi: 10.3390/medicina57101072.

Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release. 2014;185(1):12–21. doi: 10.1016/j.jconrel.2014.04.018.

Leung V, Ko F. Biomedical applications of nanofibers. Polym Adv Technol. 2011;22(3):350–65. doi: 10.1002/pat.1813.

Ahamad MS, Siddiqui S, Jafri A, Ahmad S, Afzal M, Arshad M. Induction of apoptosis and antiproliferative activity of naringenin in human epidermoid carcinoma cell through ROS generation and cell cycle arrest. PLoS One. 2014;9(10). doi: 10.1371/journal.pone.0110003.

Beg S, Barkat MA, Ahmad FJ. Nanophytomedicine [Internet]. 1st ed. Beg S, Barkat MA, Ahmad FJ, editors. Nanophytomedicine: concept to clinic. Singapore: Springer Singapore; 2020. 220 p. doi: 10.1007/978-981-15-4909-0.

Urban K, Mehrmal S, Uppal P, Giesey RL, Delost GR. The global burden of skin cancer: A longitudinal analysis from the Global Burden of Disease Study, 1990–2017. JAAD Int. 2021;2:98–108. doi: 10.1016/j.jdin.2020.10.013

Cullen JK, Simmons JL, Parsons PG, Boyle GM. Topical treatments for skin cancer. Adv Drug Deliv Rev. 2020;153:54–64. doi: 10.1016/j.addr.2019.11.002.

Publicado

2023-12-20

Cómo citar

1.
Scherer Santos J, Gonzatto MP. Flavononas cítricas en formulaciones basadas en nanotecnología para el tratamiento de la piel. Ars Pharm [Internet]. 20 de diciembre de 2023 [citado 8 de octubre de 2024];65(1):84-92. Disponible en: https://revistaseug.ugr.es/index.php/ars/article/view/29433

Número

Sección

Artículos de revisión