Liposomas en el desarrollo de formas farmacéuticas semisólidas

Autores/as

  • Marianela Chavarría Rojas Universidad de Costa Rica https://orcid.org/0000-0002-0507-6982
  • Nathalie Vega-Sánchez Universidad Latina de Costa Rica
  • María Fernanda Montero-Jara Universidad Latina de Costa Rica
  • Rebeca Marín-Fajardo Universidad Latina de Costa Rica
  • Marianela Chavarría-Rojas Universidad Latina de Costa Rica

DOI:

https://doi.org/10.30827/ars.v63i4.26059

Palabras clave:

liposomas, piel, semisólidos, nanotecnología, dermis, penetración dérmica

Resumen

Introducción: los liposomas son nanovesículas esféricas compuestas por fosfolípidos, característica directamente relacionada con su permeabilidad. Son estructuras ampliamente utilizadas como sistemas de entrega de fármacos cuando se administran por vía dérmica y transdérmica.

Método: se realizó una revisión bibliográfica considerando artículos científicos y patentes publicados en las siguientes bases de datos: Google Académico, Google Patents, Pubmed, Elsevier, ScienceDirect, Scielo. Se incluyeron artículos en idioma inglés y español publicados de 2012 a 2022, seleccionando los más relevantes en cuanto al tema.

Resultados: en total, se seleccionaron 31 artículos y 9 patentes relacionados con el uso de liposomas en formulaciones semisólidas con fármacos de diversas categorías farmacológicas, como antiinflamatorios no esteroideos (AINEs), corticosteroides, analgésicos opioides, anestésicos locales, antibióticos, antimicóticos, antivirales, antimetabolitos, vitaminas y fitoquímicos.

Conclusiones: los avances nanotecnológicos tienen una aplicación creciente en la formulación de medicamentos. El uso de sistemas liposomales corresponde a una herramienta de amplia utilidad y altamente beneficiosa para la formulación de semisólidos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Field D, Palastanga N. Anatomía y movimiento humano. Paidotribo Editorial; 2001.

Natsheh H, Touitou E. Phospholipid vesicles for dermal/transdermal and nasal administration of active molecules: The effect of surfactants and alcohols on the fluidity of their lipid bilayers and penetration enhancement properties. Molecules [Internet]. 2020;25(13):2959. Doi: https://doi.org/10.3390/molecules25132959

Jepps OG, Dancik Y, Anissimov YG, Roberts MS. Modeling the human skin barrier--towards a better understanding of dermal absorption. Adv Drug Deliv Rev [Internet]. 2013;65(2):152–68. Doi: http://dx.doi.org/10.1016/j.addr.2012.04.003

Panahi Y, Farshbaf M, Mohammadhosseini M, Mirahadi M, Khalilov R, Saghfi S, et al. Recent advances on liposomal nanoparticles: synthesis, characterization and biomedical applications. Artif Cells Nanomed Biotechnol [Internet]. 2017;45(4):788–99. Doi: https://doi.org/10.1080/21691401.2017.1282496

Shah S, Dhawan V, Holm R, Nagarsenker MS, Perrie Y. Liposomes: Advancements and innovation in the manufacturing process. Adv Drug Deliv Rev [Internet]. 2020;154–155:102–22. Doi: https://doi.org/10.1016/j.addr.2020.07.002

Oropesa-Nuñez R, Jáuregui-Haza UJ. Las nanopartículas como portadores de fármacos: características y perspectivas. CENIC [internet].2012;43(3). Disponible en: https://www.researchgate.net/publication/236649980_Las_nanoparticulas_como_portadores_de_farmacos_caracteristicas_y_perspectivas_Nanoparticles_as_drug_carriers_characteristics_and_perspectives

Bnyan R, Khan I, Ehtezazi T, Saleem I, Gordon S, O’Neill F, et al. Surfactant effects on lipid-based vesicles properties. J Pharm Sci [Internet]. 2018;107(5):1237–46. Doi: https://doi.org/10.1016/j.xphs.2018.01.005

Almeida B, Nag OK, Rogers KE, Delehanty JB. Recent progress in bioconjugation strategies for liposome-mediated drug delivery. Molecules [Internet]. 2020;25(23):5672. Doi: http://dx.doi.org/10.3390/molecules25235672

Souto EB, Macedo AS, Dias-Ferreira J, Cano A, Zielińska A, Matos CM. Elastic and ultradeformable liposomes for transdermal delivery of active pharmaceutical ingredients (APIs). Int J Mol Sci [Internet]. 2021;22(18):9743. Doi: http://dx.doi.org/10.3390/ijms22189743

Ghanbarzadeh S, Arami S. Enhanced Transdermal Delivery of Diclofenac Sodium via Conventional Liposomes, Ethosomes, and Transfersomes. Biomed Res Int [Internet]. 2013;2013:1–7. Doi: http://dx.doi.org/10.1155/2013/616810

Bhatia A, Goni V, Chopra S, Singh B, Katare OP. Evaluation of efficacy and safety of a novel lipogel containing diclofenac: A randomized, placebo controlled, double-blind clinical trial in patients with signs and symptoms of osteoarthritis. Contemp Clin Trials Commun [Internet]. 2020;20(100664):100664. Doi: http://dx.doi.org/10.1016/j.conctc.2020.100664

Cevec, G, Vierl, U. NSAID formulations, based on highly adaptable aggregates, for improved transport through barriers and topical drug delivery. Estados Unidos; US 7473432B2, 2009.

Sacha M, Faucon L, Hamon E, Ly I, Haltner-Ukomadu E. Ex vivo transdermal absorption of a liposome formulation of diclofenac. Biomed Pharmacother [Internet]. 2019;111:785–90. Doi: http://dx.doi.org/10.1016/j.biopha.2018.12.079

Moghimipour E, Salami A, Monjezi M. Formulation and evaluation of liposomes for transdermal delivery of celecoxib. Jundishapur J Nat Pharm Prod [Internet]. 2015;10(1):e17653. Doi: http://dx.doi.org/10.17795/jjnpp-17653

Gaur PK, Mishra S, Aeri V. Formulation and evaluation of guggul lipid nanovesicles for transdermal delivery of aceclofenac. ScientificWorldJournal [Internet]. 2014;2014:534210. Doi: http://dx.doi.org/10.1155/2014/534210

Sharma G, Saini MK, Thakur K, Kapil N, Garg NK, Raza K, et al. Aceclofenac cocrystal nanoliposomes for rheumatoid arthritis with better dermatokinetic attributes: a preclinical study. Nanomedicine (Lond) [Internet]. 2017;12(6):615–38. Doi: http://dx.doi.org/10.2217/nnm-2016-0405

Dávila E, De Villa C, Morejón Hernández JM, Figueredo EA. Dolor y analgésicos. Algunas consideraciones oportunas. Medisur [Internet]. 2020;18(4):694–705. Disponible en: http://www.medisur.sld.cu/index.php/medisur/article/view/4742

Iwaszkiewicz K, Hua S. Development of an effective topical liposomal formulation for localized analgesia and antiinflammatory actions in the Complete Freund’s Adjuvant rodent model of acute inflammatory pain. Pain Physician [Internet]. 2014;6;17(6;12):E719–35. Disponible en: https://www.painphysicianjournal.com/current/pdf?article=MjE5Mw%3D%3D&journal=85

Hua S. Comparison of in vitro dialysis release methods of loperamide-encapsulated liposomal gel for topical drug delivery. Int J Nanomedicine [Internet]. 2014;9:735–44. Doi: http://dx.doi.org/10.2147/IJN.S55805

Kurakula M, Srinivas C, Kasturi N, Diwan P. Formulation and Evaluation of Prednisolone Proliposomal Gel for Effective Topical Pharmacotherapy. International Journal of Pharmaceutical Sciences and Drug Research [Internet]. 2012;4(1): 35-43. Disponible en https://www.researchgate.net/profile/Mallesh-Kurakula/publication/289098891_Formulation_and_Evaluation_of_Prednisolone_Proliposomal_Gel_for_Effective_Topical_Pharmacotherapy/links/6075c561299bf1f56d55e91c/Formulation-and-Evaluation-of-Prednisolone-Proliposomal-Gel-for-Effective-Topical-Pharmacotherapy.pdf

El Kechai N, Mamelle E, Nguyen Y, Huang N, Nicolas V, Chaminade P, et al. Hyaluronic acid liposomal gel sustains delivery of a corticoid to the inner ear. J Control Release [Internet]. 2016;226:248–57. Disponible en: https://www.sciencedirect.com/science/article/pii/S0168365916300657

Franz-Montan M, Baroni D, Brunetto G, Sobral VRV, da Silva CMG, Venâncio P, et al. Liposomal lidocaine gel for topical use at the oral mucosa: characterization, in vitro assays and in vivo anesthetic efficacy in humans. J Liposome Res [Internet]. 2015;25(1):11–9.Disponible en: https://www.researchgate.net/publication/262149495_Liposomal_lidocaine_gel_for_topical_use_at_the_oral_mucosa_Characterization_in_vitro_assays_and_in_vivo_anesthetic_efficacy_in_humans

Wang J, Zhang L, Chi H, Wang S. An alternative choice of lidocaine-loaded liposomes: lidocaine-loaded lipid-polymer hybrid nanoparticles for local anesthetic therapy. Drug Deliv [Internet]. 2016;23(4):1254–60. Doi: http://dx.doi.org/10.3109/10717544.2016.1141259

Hood R, Kendall E, Devoe D, Finkel J, Junqueira M & Quezado, Z. Nano-Liposomal Formulations and Method Of Use. Estados Unidos; WO 2014/144365 A1, 2014.

Hsu C-Y, Yang S-C, Sung CT, Weng Y-H, Fang J-Y. Anti-MRSA malleable liposomes carrying chloramphenicol for ameliorating hair follicle targeting. Int J Nanomedicine [Internet]. 2017;12:8227–38. Doi: http://dx.doi.org/10.2147/IJN.S147226

Thapa RK, Winther-Larsen HC, Ovchinnikov K, Carlsen H, Diep DB, Tønnesen HH. Hybrid hydrogels for bacteriocin delivery to infected wounds. Eur J Pharm Sci [Internet]. 2021;166(105990):105990. Doi: http://dx.doi.org/10.1016/j.ejps.2021.105990

Gao W, Vecchio D, Li J, Zhu J, Zhang Q, Fu V, et al. Hydrogel containing nanoparticle-stabilized liposomes for topical antimicrobial delivery. ACS Nano [Internet]. 2014;8(3):2900–7. Doi: http://dx.doi.org/10.1021/nn500110a

Villegas E. Composición de doxiciclina en liposomas para la prevención, mejora y/o tratamiento de patologías oculares. España; WO 2016/046442 A1, 2016.

Asadi P, Mehravaran A, Soltanloo N, Abastabar M, Akhtari J. Nanoliposome-loaded antifungal drugs for dermal administration: A review. Curr Med Mycol [Internet]. 2021;7(1):71–8. Doi: http://dx.doi.org/10.18502/cmm.7.1.6247

Verma S, Utreja P. Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy. Asian J Pharm Sci [Internet]. 2019;14(2):117–29. Doi: http://dx.doi.org/10.1016/j.ajps.2018.05.007

Elmoslemany RM, Abdallah OY, El-Khordagui LK, Khalafallah NM. Propylene glycol liposomes as a topical delivery system for miconazole nitrate: comparison with conventional liposomes. AAPS PharmSciTech [Internet]. 2012;13(2):723–31. Doi: http://dx.doi.org/10.1208/s12249-012-9783-6

İzgü F, Bayram G, Tosun K, İzgü D. Stratum corneum lipid liposome-encapsulated panomycocin: preparation, characterization, and the determination of antimycotic efficacy against Candida spp. isolated from patients with vulvovaginitis in an in vitro human vaginal epithelium tissue model. Int J Nanomedicine [Internet]. 2017;12:5601–11. Doi: http://dx.doi.org/10.2147/ijn.s141949

Lozano JA, Argüelles JC, Argüelles A, Sánchez-Fresneda R, Guirao A. Composición sinérgica que comprende propóleo y ácido carnósico para uso en la prevención y el tratamiento de candidiasis. España; WO 2016/124957 A1, 2016.

Jøraholmen MW, Basnet P, Acharya G, Škalko-Basnet N. PEGylated liposomes for topical vaginal therapy improve delivery of interferon alpha. Eur J Pharm Biopharm [Internet]. 2017;113:132–9. Doi: http://dx.doi.org/10.1016/j.ejpb.2016.12.02

Hussain A, Samad A, Ramzan M, Ahsan MN, Ur Rehman Z, Ahmad FJ. Elastic liposome-based gel for topical delivery of 5-fluorouracil: in vitro and in vivo investigation. Drug Deliv [Internet]. 2016;23(4):1115–29. Doi: http://dx.doi.org/10.3109/10717544.2014.976891

Zeb A, Qureshi OS, Kim H-S, Cha J-H, Kim H-S, Kim J-K. Improved skin permeation of methotrexate via nanosized ultradeformable liposomes. Int J Nanomedicine [Internet]. 2016 ;11:3813–24. Doi: http://dx.doi.org/10.2147/IJN.S109565

Carrera-Castro, C. En la naturaleza está la respuesta: “Micronutrientes: las vitaminas, agentes terapéuticos en las heridas”. Enfermería Global [internet]. 2013: 31:273-289. Disponible en: https://scielo.isciii.es/pdf/eg/v12n31/revision1.pdf

Brignone SG, Ravetti S, Palma SD. Efectos biológicos de la Vitamina C y su implicancia en el diseño de formulaciones tópicas. Rescifar [Internet]. 2020;1(2):169-82. Disponible en: https://ri.conicet.gov.ar/bitstream/handle/11336/142293/CONICET_Digital_Nro.e8b2d3ac-454a-4db1-8a5c-716de88c22ee_A.pdf?sequence=2&isAllowed=y

Serrano G, Almudéver P, Serrano J-M, Milara J, Torrens A, Expósito I, et al. Phosphatidylcholine liposomes as carriers to improve topical ascorbic acid treatment of skin disorders. Clin Cosmet Investig Dermatol [Internet]. 2015;8:591–9. Doi: http://dx.doi.org/10.2147/CCID.S90781

Xia H, Cheng Y, Xu Y, Cheng Z. Retinoic acid liposome-hydrogel: preparation, penetration through mouse skin and induction of F9 mouse teratocarcinoma stem cells differentiation. Braz J Pharm Sci [Internet]. 2015;51(3):541–9. Disponible en: https://www.scielo.br/j/bjps/a/5mM4ZtBbS7LwWbd7fnvJTpw/?format=pdf&lang=en

Gasaly N, Riveros K, Gotteland M. Fitoquímicos: una nueva clase de prebióticos. Rev Chil Nutr [Internet]. 2020;47(2):317–27. Disponible en: https://www.scielo.cl/pdf/rchnut/v47n2/0717-7518-rchnut-47-02-0317.pdf

Arguedas E, Cruz M, Romero G. El uso de Croton Draco como una alternativa coadyuvante en el tratamiento de heridas generando un efecto sinérgico con liposomas. InvestFarma® Unibe.ac.cr. [Internet]. 2021;2:9-17. Disponible en: http://www.unibe.ac.cr/ojs/index.php/InvestFarma/article/view/122/125

Imran M, Iqubal MK, Imtiyaz K, Saleem S, Mittal S, Rizvi MMA, et al. Topical nanostructured lipid carrier gel of quercetin and resveratrol: Formulation, optimization, in vitro and ex vivo study for the treatment of skin cancer. Int J Pharm [Internet]. 2020;587(119705):119705. Disponible en: https://www.sciencedirect.com/science/article/pii/S037851732030689X

Jaafari MR, Hatamipour M, Alavizadeh SH, Abbasi A, Saberi Z, Rafati S, et al. Development of a topical liposomal formulation of Amphotericin B for the treatment of cutaneous leishmaniasis. Int J Parasitol Drugs Drug Resist [Internet]. 2019;11:156–65. Doi: http://dx.doi.org/10.1016/j.ijpddr.2019.09.004

Berenguer D, Alcover MM, Sessa M, Halbaut L, Guillén C, Boix-Montañés A, et al. Topical amphotericin B semisolid dosage form for cutaneous leishmaniasis: Physicochemical characterization, ex vivo skin permeation and biological activity. Pharmaceutics [Internet]. 2020;12(2):149. Doi: http://dx.doi.org/10.3390/pharmaceutics12020149

Wang W, Shu G-F, Lu K-J, Xu X-L, Sun M-C, Qi J, et al. Flexible liposomal gel dual-loaded with all-trans retinoic acid and betamethasone for enhanced therapeutic efficiency of psoriasis. J Nanobiotechnology [Internet]. 2020;18(1):80. Doi: http://dx.doi.org/10.1186/s12951-020-00635-0

Atallah C, Viennet C, Robin S, Ibazizen S, Greige-Gerges H, Charcosset C. Effect of cysteamine hydrochloride-loaded liposomes on skin depigmenting and penetration. Eur J Pharm Sci [Internet]. 2022;168(106082):106082. Doi: http://dx.doi.org/10.1016/j.ejps.2021.106082

Pozo D, Klippstein R, González R, Trigo I y Vargas de los Monteros M. Nanoliposomas funcionalizados con péptidos. España; WO 2012/101309 A1, 2012.

时军张慧迪吴艳婷. A kind of liposome gel formulation and its preparation and use for suppressing scar proliferation. China; CN 107137345A, 2017.

Bilmin K, Grieb P, Szopiński P, Lagner M, Przybylo M. Gel form of heparin sodium salt for dermal administration, and a method for its preparation. Polonia; WO 2015/181746 A1, 2015.

Scherer S, Wagner C, Leuner C & Fleischer W. Hydrogel. Estados Unidos; US 9415133 B2, 2016.

González P. Composición de azufre liposomado. España; WO 2015/114194 A1, 2015.

Descargas

Publicado

2022-09-28

Cómo citar

1.
Chavarría Rojas M, Vega-Sánchez N, Montero-Jara MF, Marín-Fajardo R, Chavarría-Rojas M. Liposomas en el desarrollo de formas farmacéuticas semisólidas. Ars Pharm [Internet]. 28 de septiembre de 2022 [citado 5 de noviembre de 2024];63(4):372-86. Disponible en: https://revistaseug.ugr.es/index.php/ars/article/view/26059

Número

Sección

Artículos de revisión