Avances recientes en la terapia dirigida al cáncer con el ácido hialurónico como adyuvante potencial

Autores/as

  • Garima Gupta Banaras Hindu University, Indian Institute of Technology, Department of Pharmaceutical Eng. & Technology, Varanasi, India
  • Pulkit Asati Banaras Hindu University, Indian Institute of Technology, Department of Pharmaceutical Eng. & Technology, Varanasi, India
  • Pranjul Jain VNS Group of Institutions, Faculty of Pharmacy, Department of Pharmaceutical Technology, Bhopal, India.
  • Pranali Mishra VNS Group of Institutions, Faculty of Pharmacy, Department of Pharmaceutical Technology, Bhopal, India.
  • Ankit Mishra VNS Faculty of Pharmacy https://orcid.org/0000-0003-0795-8417
  • Pradeep Singour VNS Group of Institutions, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bhopal, India.

DOI:

https://doi.org/10.30827/ars.v63i4.25208

Palabras clave:

Ácido hialurónico, cáncer; Administración/ dosificación; nanopartículas; Terapia combinada

Resumen

Introducción: El compuesto natural no sulfatado, el ácido hialurónico (HA), es un mucopolisacárido que tiene un papel esencial en la biología celular, es un elemento fundamental de la célula viva. Ha juega un papel esencial en la administración dirigida de medicamentos, recientemente ha adquirido mucha atención debido a varias ventajas como la biocompatibilidad, la biodegradabilidad, la no inmunogenicidad y la no toxicidad.

Métodos: Esta revisión narrativa se basa en la literatura buscada en PubMed y la base de datos de Elsevier desde enero a mayo de 2021 utilizando las siguientes palabras clave: “Hyaluronic acid”, “Hyaluronic acid in cancer therapy”, “Hyaluronic acid in cancer targeting”, “Hyaluronic acid in drug targeting”. Se consideraron las investigaciones publicadas en los últimos cinco años, sin embargo, en las referencias cruzadas, no se siguió tal línea de tiempo.

Resultados: A partir de la literatura, se encuentra que HA puede reconocer distintos receptores que se revelan anormalmente en grandes cantidades en la superficie exterior de tejidos o células cancerosas; por lo tanto, se puede usar para la conjugación con fármacos contra el cáncer, lo que facilita su actividad terapéutica mejorada sobre las células cancerosas que las células normales. También se encuentra que los sistemas de administración de fármacos basados en HA proporcionan mayor estabilidad y solubilidad de los agentes anticancerígenos en entornos biológicos. Con base a estos hallazgos y ventajas, el HA se ha investigado abundantemente como un biomaterial prometedor para la evolución de varios sistemas de administración como micelas, liposomas, hidrogeles, nanopartículas, etc. Según investigaciones recientes, el sistema basado en HA proporciona inmunoterapia, terapia génica, quimioterapia dirigida y terapia combinada con enormes aplicaciones en la evolución de una terapia altamente eficaz y rentable para el tratamiento del cáncer.

Conclusión: Esta revisión evalúa y resume los enfoques y estrategias recientes para diseñar y evolucionar diversos sistemas de administración de fármacos basados en la HA para el tratamiento del cáncer.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015 Apr 3;348(6230):62-8. DOI:10.1126/science.aaa4967

Nie F, Yu X, Huang M, Wang Y, Xie M, Ma H, et al. Long noncoding RNA ZFAS1 promotes gastric cancer cells proliferation by epigenetically repressing KLF2 and NKD2 expression. Oncotarget. 2017 Jun 6;8(24):38227. DOI: 10.18632/oncotarget.9611

Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer. 2010 Dec 15;127(12):2893-917. DOI:10.1002/ijc.25516

Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, et al. Cancer treatment and survivorship statistics, 2012. CA: A cancer journal for clinicians. 2012 Jul;62(4):220-41. DOI:10.3322/caac.21149

Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA: A cancer journal for clinicians. 2010 Sep;60(5):277-300. DOI:10.3322/caac.20073

McGuire S. World cancer report 2014. Geneva, Switzerland: World Health Organization, international agency for research on cancer, WHO Press, 2015. Advances in nutrition. 2016 Mar;7(2):418-9. DOI: https://doi.org/10.3945/an.116.012211

Arruebo M, Vilaboa N, Sáez-Gutierrez B, Lambea J, Tres A, Valladares M. Assessment of the evolution of cancer treatment therapies. Cancers (Basel). 2011 Aug 12;3(3):3279-330. DOI:10.3390/cancers3033279

Kayl AE, Meyers CA. Side-effects of chemotherapy and quality of life in ovarian and breast cancer patients. Current opinion in obstetrics and gynecology. 2006 Feb 1;18(1):24-8. DOI: 10.1097/01.gco.0000192996.20040.24

Shah K, Crowder D, Overmeyer J, Maltese W, Yun Y. Hyaluronan drug delivery systems are promising for cancer therapy because of their selective attachment, enhanced uptake, and superior efficacy. Biomedical Engineering Letters. 2015 Jun;5(2):109-23.

Luo Z, Dai Y, Gao HJAPSB. Development and application of hyaluronic acid in tumor targeting drug delivery. Acta Pharm. Sin. B. 2019 Nov 1;9(6):1099-112. DOI:1016/j.apsb.2019.06.004

Huang G, Huang H. Hyaluronic acid-based biopharmaceutical delivery and tumor-targeted drug delivery system. J. Controlled Release. 2018 May 28; 278:122-6. DOI:10.1016/j.jconrel.2018.04.015

Robert L. Hyaluronan, a truly “youthful” polysaccharide. Its medical applications. Pathol. Biol. 2015 Feb 1;63(1):32-4. DOI:10.1016/j.patbio.2014.05.019

Reed RK, Lilja K, Laurent TC. Hyaluronan in the rat with special reference to the skin. Acta Physiol. Scand. 1988 Nov;134(3):405-11. DOI:10.1111/j.1748-1716.1988.tb08508.x

Schaefer L, Schaefer RM. Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res. 2010 Jan;339(1):237-46.

Lee SY, Kang MS, Jeong WY, Han DW, Kim KS. Hyaluronic acid-based theranostic nanomedicines for targeted cancer therapy. Cancers 2020 Apr 10;12(4):940. DOI:10.3390/cancers12040940

Ossipov DA. Nanostructured hyaluronic acid-based materials for active delivery to cancer. Expert Opin. Drug Delivery. 2010 Jun 1;7(6):681-703. DOI:10.1517/17425241003730399

Huang G, Huang H. Application of hyaluronic acid as carriers in drug delivery. Drug delivery. 2018 Jan 1;25(1):766-72. DOI:10.1080/10717544.2018.1450910

Meyer K, Palmer JW. On the nature of the ocular fluids. Am. J. Ophthalmol. 1936 Oct 1;19(10):859-65. DOI:10.1016/S0002-9394(36)92723-X

Kogan G, Šoltés L, Stern R, Schiller J, Mendichi R. Hyaluronic acid: its function and degradation in in vivo systems. Studies in natural products chemistry. 34: Elsevier; 2008 Jan 1;34:789-882. DOI:10.1016/S1572-5995(08)80035-X

Ito Y. Growth Factors and Protein-Modified Surfaces and Interfaces. In Comprehensive Biomaterials, Ducheyne P (Ed), 4.416: Elsevier; 2011,247-279. DOI:10.1016/B978-0-08-055294-1.00263-4.

Fallacara A, Baldini E, Manfredini S, Vertuani S. Hyaluronic acid in the third millennium. Polymers. 2018;10(7):701. DOI:10.3390/polym1007070

Snetkov P, Zakharova K, Morozkina S, Olekhnovich R, Uspenskaya M. Hyaluronic acid: The influence of molecular weight on structural, physical, physicochemical, and degradable properties of biopolymer. Polymers.2020;12(8):1800. DOI:10.3390/polym12081800

Ignatova EY, Gurov AJPCJ. Principles of extraction and purification of hyaluronic acid. Pharm. Chem. J. 1990;24(3):211-216.

Selyanin MA, Boykov PY, Khabarov VN, Polyak FJ. Properties, Application in Biology, Medicine. The History of Hyaluronic Acid Discovery, Foundational Reserch and Initial Use. In Hyaluronic Acid. John Wiley & Sons, Ltd; 2015:1-8. DOI:10.1002/9781118695920

Zhong W, Pang L, Feng H, Dong H, Wang S, Cong H, et al. Recent advantage of hyaluronic acid for anticancer application: a review of “3S” transition approach. Carbohydr. Polym.. 2020; 238:116204. DOI:10.1016/j.carbpol.2020.116204

Liu E, Zhou Y, Liu Z, Li J, Zhang D, Chen J, et al. Cisplatin loaded hyaluronic acid modified TiO2 nanoparticles for neoadjuvant chemotherapy of ovarian cancer. J. Nanomater. 2015; DOI:10.1155/2015/390358.

Xin D, Wang Y, Xiang J. The use of amino acid linkers in the conjugation of paclitaxel with hyaluronic acid as drug delivery system: synthesis, self-assembled property, drug release, and in vitro efficiency. Pharm. Res. 2010;27(2):380-389.

El Kechai N, Bochot A, Huang N, Nguyen Y, Ferrary E, Agnely F. Effect of liposomes on rheological and syringe ability properties of hyaluronic acid hydrogels intended for local injection of drugs. International journal of pharmaceutics. 2015; 487(1-2):187-196. DOI:10.1016/j.ijpharm.2015.04.019

Park JK, Shim JH, Kang KS, Yeom J, Jung HS, Kim JY, et al. Solid free-form fabrication of tissue-engineering scaffolds with a poly (lactic-co-glycolic acid) grafted hyaluronic acid conjugate encapsulating an intact bone morphogenetic protein–2/poly (ethylene glycol) complex. Adv. Funct. Mater. 2011;21(15):2906-2912. DOI:10.1002/adfm.201100612

Chen ZX, Liu MD, Zhang MK, Wang SB, Xu L, Li CX, et al. Interfering with Lactate-Fueled Respiration for Enhanced Photodynamic Tumor Therapy by a Porphyrinic MOF Nanoplatform. Adv. Funct. Mater. 2018;28(36):1803498. DOI:10.1002/adfm.201803498

Gotov O, Battogtokh G, Ko Y. Docetaxel-loaded hyaluronic acid–cathepsin b-cleavable-peptide–gold nanoparticles for the treatment of cancer. Mol. Pharmaceutics. 2018;15(10):4668-4676. DOI: 10.1021/acs.molpharmaceut.8b0064

Yadav AK, Mishra P, Jain S, Mishra P, Mishra AK, Agrawal G. Preparation and characterization of HA–PEG–PCL intelligent core–corona nanoparticles for delivery of doxorubicin. J. Drug Targeting. 2008;6(6):464-478. DOI:10.1016/j.biomaterials.2011.01.021

Xiao K, Li Y, Luo J, Lee JS, Xiao W, Gonik AM, et al. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials. 2011; 32(13):3435-3446. DOI:10.1016/j.biomaterials.2011.01.021

Kim K, Choi H, Choi ES, Park M-H, Ryu J-HJP. Hyaluronic acid-coated nanomedicine for targeted cancer therapy. Pharmaceutics. 2019;11(7):301. DOI:10.3390/pharmaceutics11070301

Yin T, Wang J, Yin L, Shen L, Zhou J, Huo MJPC. Redox-sensitive hyaluronic acid–paclitaxel conjugate micelles with high physical drug loading for efficient tumor therapy. Polym. Chem. 2015;6(46):8047-8059.

Lee H, Ahn CH, Park TG. Poly [lactic-co-(glycolic acid)]-grafted hyaluronic acid copolymer micelle nanoparticles for target-specific delivery of doxorubicin. Macromol. Biosci. 2009; 9(4):336-342. DOI:10.1002/mabi.200800229

Lammers T, Subr V, Ulbrich K, Peschke P, Huber PE, Hennink WE, Storm G. Simultaneous delivery of doxorubicin and gemcitabine to tumors in vivo using prototypic polymeric drug carriers. Biomaterials. 2009 Jul 1;30(20):3466-75.

Li J, Huo M, Wang J, Zhou J, Mohammad JM, Zhang Y, et al. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Biomaterials. 2012; 33(7):2310-2320. DOI:10.1016/j.biomaterials.2011.11.022

Choi KY, Jeon EJ, Yoon HY, Lee BS, Na JH, Min KH, et al. Theragnostic nanoparticles based on PEGylated hyaluronic acid for the diagnosis, therapy and monitoring of colon cancer. Biomaterials. 2012;33(26):6186-6193. DOI:10.1016/j.biomaterials.2012.05.029

Qiu L, Li Z, Qiao M, Long M, Wang M, Zhang X, et al. Self-assembled pH-responsive hyaluronic acid–g-poly (l-histidine) copolymer micelles for targeted intracellular delivery of doxorubicin. Acta Biomater. 2014;10(5):2024-2035. DOI:10.1016/j.actbio.2013.12.025

Thomas RG, Moon M, Lee S, Jeong Y. Paclitaxel loaded hyaluronic acid nanoparticles for targeted cancer therapy: in vitro and in vivo analysis. Int. J. Biol. Macromol. 2015;, 72:510-518. DOI:10.1016/j.ijbiomac.2014.08.054

Shin JM, Oh SJ, Kwon S, Deepagan V, Lee M, Song SH, et al. A PEGylated hyaluronic acid conjugate for targeted cancer immunotherapy. J. Controlled Release. 2017; 267:181-190. DOI:10.1016/j.jconrel.2017.08.032

Mao H-L, Qian F, Li S, Shen J-W, Ye C-K, Hua L, et al. delivery of doxorubicin from hyaluronic acid-modified glutathione-responsive ferrocene micelles for combination cancer therapy. Mol. Pharmaceutics. 2019 Jan 9;16(3):987-994. DOI:10.1021/acs.molpharmaceut.8b00862

Taetz S, Bochot A, Surace C, Arpicco S, Renoir J-M, Schaefer UF, et al. Hyaluronic acid-modified DOTAP/DOPE liposomes for the targeted delivery of anti-telomerase siRNA to CD44-expressing lung cancer cells. Oligonucleotides. 2009;,19(2):103-116. DOI:10.1089/oli.2008.0168

Wojcicki AD, Hillaireau H, Nascimento TL, Arpicco S, Taverna M, Ribes S, et al. Hyaluronic acid-bearing lipoplexes: physico-chemical characterization and in vitro targeting of the CD44 receptor. J. Controlled Release. 2012; ,162(3):545-552. DOI:10.1016/j.jconrel.2012.07.015

Rivkin I, Cohen K, Koffler J, Melikhov D, Peer D, Margalit RJB. Paclitaxel-clusters coated with hyaluronan as selective tumor-targeted nanovectors. Biomaterials. 2010; 31(27):7106-7114. DOI:10.1016/j.biomaterials.2010.05.067

Yang X-y, Li Y-x, Li M, Zhang L, Feng L-x, Zhang NJCl. Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer. Cancer letters. 2013;, 334(2):338-345. DOI:10.1016/j.canlet.2012.07.002

Peer D, Margalit RJIJoC. Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models. Int. J. Cancer. 2004; 108(5):780-789. DOI:10.1002/ijc.11615

Bajaj G, Kim MR, Mohammed SI, Yeo YJJoCR. Hyaluronic acid-based hydrogel for regional delivery of paclitaxel to intraperitoneal tumors. J. Controlled Release. 2012;,158(3):386-392. DOI:10.1016/j.jconrel.2011.12.001

Jhan H-J, Liu J-J, Chen Y-C, Liu D-Z, Sheu M-T, Ho H-OJN. Novel injectable thermosensitive hydrogels for delivering hyaluronic acid–doxorubicin nanocomplexes to locally treat tumors. Nanomedicine. 2015;10(8):1263-1274. DOI:10.2217/nnm.14.211

Cho EJ, Sun B, Doh K-O, Wilson EM, Torregrosa-Allen S, Elzey BD, et al. Intraperitoneal delivery of platinum with in-situ crosslinkable hyaluronic acid gel for local therapy of ovarian cancer. Biomaterials. 2015;37:312-319. DOI:10.1016/j.biomaterials.2014.10.039

Fu C, Li H, Li N, Miao X, Xie M, Du W, et al. Conjugating an anticancer drug onto thiolated hyaluronic acid by acid liable hydrazone linkage for its gelation and dual stimuli-response release. Carbohydr. Polym. 2015; , 128:163-170. DOI:10.1016/j.carbpol.2015.04.024

Ueda K, Akiba J, Ogasawara S, Todoroki K, Nakayama M, Sumi A, et al. Growth inhibitory effect of an injectable hyaluronic acid–tyramine hydrogels incorporating human natural interferon-α and sorafenib on renal cell carcinoma cells. Acta Biomater. 2016;,29:103-111. DOI:10.1016/j.actbio.2015.10.024

Shin WJ, Noh HJ, Noh Y-W, Kim S, Um SH, Lim Y. Hyaluronic acid-supported combination of water insoluble immunostimulatory compounds for anticancer immunotherapy. Carbohydr. Polym. 2017;, 155:1-10. DOI:10.1016/j.carbpol.2016.08.040

Yang G, Fu S, Yao W, Wang X, Zha Q, Tang R, et al. Hyaluronic acid nanogels prepared via ortho ester linkages show pH-triggered behavior, enhanced penetration and antitumor efficacy in 3-D tumor spheroids. J. Colloid Interface Sci. 2017;, 504:25-38. DOI:10.1016/j.jcis.2017.05.033

Li J, Yang X, Yang P, Gao F, Chemistry N-M. Hyaluronic acid–conjugated silica nanoparticles for breast cancer therapy. Inorg. Nano-Met. Chem. 2017;47(5):777-782. DOI:10.1080/15533174.2016.1218509

Fu C, Yang R-M, Wang L, Li N-n, Qi M, Xu X-d, et al. Surface functionalization of superparamagnetic nanoparticles by an acid-liable polysaccharide-based prodrug for combinatorial monitoring and chemotherapy of hepatocellular carcinoma. RSC Adv. 2017;7(66):41919-41928.

Lee MS, Lee JE, Byun E, Kim NW, Lee K, Lee H, et al. Target-specific delivery of siRNA by stabilized calcium phosphate nanoparticles using dopa–hyaluronic acid conjugate. J. Controlled Release. 2014;92:122-130. DOI:10.1016/j.jconrel.2014.06.049

Wang H, Sun H, Wei H, Xi P, Nie S, Ren Q. Biocompatible hyaluronic acid polymer-coated quantum dots for CD44+ cancer cell-targeted imaging. J. Nanopart. Res. 2014;16(10):1-13.

Yang Y, Jing L, Li X, Lin L, Yue X, Dai Z. Hyaluronic acid conjugated magnetic prussian blue@ quantum dot nanoparticles for cancer theranostics. Theranostics. 2017;7(2):466.

Yun YH, Goetz DJ, Yellen P, Chen WJB. Hyaluronan microspheres for sustained gene delivery and site-specific targeting. Biomaterials. 2004;25(1):147-157. DOI:10.1016/S0142-9612(03)00467-8

Liu K, Wang Z-q, Wang S-j, Liu P, Qin Y-h, Ma Y, et al. Hyaluronic acid-tagged silica nanoparticles in colon cancer therapy: therapeutic efficacy evaluation. Int. J. Nanomed. 2015;10:6445.

Cho H-J, Yoon HY, Koo H, Ko S-H, Shim J-S, Lee J-H, et al. Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) and Pluronic® for tumor-targeted delivery of docetaxel. Biomaterials. 2011;32(29):7181-7190. DOI:10.1016/j.biomaterials.2011.06.028

Wang L, Jia E. Ovarian cancer targeted hyaluronic acid-based nanoparticle system for paclitaxel delivery to overcome drug resistance. Cancer Drug Delivery. 2016; 23(5):1810-1817. DOI:10.3109/10717544.2015.1101792

Nam J-P, Nah J-W. Target gene delivery from targeting ligand conjugated chitosan–PEI copolymer for cancer therapy. Carbohydr. Polym.. 2016;135:153-161. DOI:10.1016/j.carbpol.2015.08.053

Zheng D, Giljohann DA, Chen DL, Massich MD, Wang X-Q, Iordanov H, et al. Proc. Natl. Acad. Sci. 2012;109(30):11975-11980. DOI:10.1073/pnas.1118425109

Massich MD, Giljohann DA, Schmucker AL, Patel PC, Mirkin CA. Cellular Response of Polyvalent Oligonucleotide− Gold Nanoparticle Conjugates. ACS nano. 2010; 4(10):5641-5646.

Massich MD, Giljohann DA, Seferos DS, Ludlow LE, Horvath CM, Mirkin CAJMp. Regulating immune response using polyvalent nucleic acid− gold nanoparticle conjugates. Mol. Pharmaceutics. 2009;6(6):1934-1940. DOI:10.1021/mp900172m

Park K, Yang J-A, Lee M-Y, Lee H, Hahn SK. Reducible hyaluronic acid–siRNA conjugate for target specific gene silencing. Bioconjugate Chem. 2013;24(7):1201-1209. DOI:10.1021/bc4001257

Yin H, Zhao F, Zhang D, Li JJ. Hyaluronic acid conjugated β-cyclodextrin-oligoethylenimine star polymer for CD44-targeted gene delivery. Int. J. Pharm. 2015;483(1-2):169-179. DOI:10.1016/j.ijpharm.2015.02.022

Lee H, Lee K, Park TG. Hyaluronic acid− paclitaxel conjugate micelles: Synthesis, characterization, and antitumor activity. Bioconjugate chemistry. 2008;19(6):1319-1325. DOI:10.1021/bc8000485

Cai S, Thati S, Bagby TR, Diab H-M, Davies NM, Cohen MS, et al. Localized doxorubicin chemotherapy with a biopolymeric nanocarrier improves survival and reduces toxicity in xenografts of human breast cancer. J. Controlled Release. 2010;146(2):212-218. DOI:10.1021/bc8000485

Lee Y-H, Yoon HY, Shin JM, Saravanakumar G, Noh KH, Song K-H, et al. A polymeric conjugate foreignizing tumor cells for targeted immunotherapy in vivo. J. Controlled Release. 2015;199:98-105. DOI:10.1016/j.jconrel.2014.12.00

Liu Y, Qiao L, Zhang S, Wan G, Chen B, Zhou P, et al. Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy. Acta Biomater. Acta biomaterialia. 2018; 66:310-324. DOI:10.1016/j.actbio.2017.11.010

Chang J-E, Cho H-J, Yi E, Kim D-D, Jheon S. Hypocrellin B and paclitaxel-encapsulated hyaluronic acid–ceramide nanoparticles for targeted photodynamic therapy in lung cancer. Journal of Photochemistry and Photobiology B: Biology. 2016;158:113-121. DOI:10.1016/j.jphotobiol.2016.02.035

Zhong Y, Goltsche K, Cheng L, Xie F, Meng F, Deng C, et al. Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts in vivo. Biomaterials. 2016;84:250-261. DOI:10.1016/j.biomaterials.2016.01.049

Paliwal SR, Paliwal R, Agrawal GP, Vyas SP. Hyaluronic acid modified pH-sensitive liposomes for targeted intracellular delivery of doxorubicin. Journal of liposome research. 2016;26(4):276-287. DOI:10.3109/08982104.2015.1117489

Zhang B, Zhang Y, Yu D. Lung cancer gene therapy: Transferrin and hyaluronic acid dual ligand-decorated novel lipid carriers for targeted gene delivery. Oncol. Rep. 2017;37(2):937-944. DOI:10.3892/or.2016.5298

Xu Z, Wang Y, Zhang L, Huang L. Nanoparticle-delivered transforming growth factor-β siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment. ACS nano. 2014;8(4):3636-3645. DOI:10.1021/nn500216y

Lv Y, Xu C, Zhao X, Lin C, Yang X, Xin X, et al. Nanoplatform assembled from a CD44-targeted prodrug and smart liposomes for dual targeting of tumor microenvironment and cancer cells. Acs Nano. 2018;12(2):1519-1536. DOI:10.1021/acsnano.7b08051

Deng X, Cao M, Zhang J, Hu K, Yin Z, Zhou Z, et al. Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials. 2014;, 35(14):4333-4344. DOI:10.1016/j.biomaterials.2014.02.006

Khatun Z, Nurunnabi M, Nafiujjaman M, Reeck GR, Khan HA, Cho KJ, et al. A hyaluronic acid nanogel for photo–chemo theranostics of lung cancer with simultaneous light-responsive controlled release of doxorubicin. Nanoscale. 2015;7(24):10680-10689.

Wang Z, Chen Z, Liu Z, Shi P, Dong K, Ju E, et al. A multi-stimuli responsive gold nanocage–hyaluronic platform for targeted photothermal and chemotherapy. Biomaterials. 2014;35(36):9678-88. DOI:10.1016/j.biomaterials.2014.08.013

Ganesh S, Iyer AK, Morrissey DV, Amiji MM. Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors. Biomaterials. 2013;34(13):3489-3502. DOI:10.1016/j.biomaterials.2013.01.077

Jiang G, Park K, Kim J, Kim KS, Oh EJ, Kang H, et al. Hyaluronic acid–polyethyleneimine conjugate for target specific intracellular delivery of siRNA. Biopolymers: Original Research on Biomolecules. 2008;89(7):635-642. DOI:10.1002/bip.20978

Lee H, Mok H, Lee S, Oh Y-K, Park TG. Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels. J. Controlled Release. 2007;119(2):245-252. DOI:10.1016/j.jconrel.2007.02.011

Publicado

2022-09-28

Cómo citar

1.
Gupta G, Asati P, Jain P, Mishra P, Mishra A, Singour P. Avances recientes en la terapia dirigida al cáncer con el ácido hialurónico como adyuvante potencial. Ars Pharm [Internet]. 28 de septiembre de 2022 [citado 22 de diciembre de 2024];63(4):387-409. Disponible en: https://revistaseug.ugr.es/index.php/ars/article/view/25208

Número

Sección

Artículos de revisión