Avances recientes en la terapia dirigida al cáncer con el ácido hialurónico como adyuvante potencial
DOI:
https://doi.org/10.30827/ars.v63i4.25208Palabras clave:
Ácido hialurónico, cáncer; Administración/ dosificación; nanopartículas; Terapia combinadaResumen
Introducción: El compuesto natural no sulfatado, el ácido hialurónico (HA), es un mucopolisacárido que tiene un papel esencial en la biología celular, es un elemento fundamental de la célula viva. Ha juega un papel esencial en la administración dirigida de medicamentos, recientemente ha adquirido mucha atención debido a varias ventajas como la biocompatibilidad, la biodegradabilidad, la no inmunogenicidad y la no toxicidad.
Métodos: Esta revisión narrativa se basa en la literatura buscada en PubMed y la base de datos de Elsevier desde enero a mayo de 2021 utilizando las siguientes palabras clave: “Hyaluronic acid”, “Hyaluronic acid in cancer therapy”, “Hyaluronic acid in cancer targeting”, “Hyaluronic acid in drug targeting”. Se consideraron las investigaciones publicadas en los últimos cinco años, sin embargo, en las referencias cruzadas, no se siguió tal línea de tiempo.
Resultados: A partir de la literatura, se encuentra que HA puede reconocer distintos receptores que se revelan anormalmente en grandes cantidades en la superficie exterior de tejidos o células cancerosas; por lo tanto, se puede usar para la conjugación con fármacos contra el cáncer, lo que facilita su actividad terapéutica mejorada sobre las células cancerosas que las células normales. También se encuentra que los sistemas de administración de fármacos basados en HA proporcionan mayor estabilidad y solubilidad de los agentes anticancerígenos en entornos biológicos. Con base a estos hallazgos y ventajas, el HA se ha investigado abundantemente como un biomaterial prometedor para la evolución de varios sistemas de administración como micelas, liposomas, hidrogeles, nanopartículas, etc. Según investigaciones recientes, el sistema basado en HA proporciona inmunoterapia, terapia génica, quimioterapia dirigida y terapia combinada con enormes aplicaciones en la evolución de una terapia altamente eficaz y rentable para el tratamiento del cáncer.
Conclusión: Esta revisión evalúa y resume los enfoques y estrategias recientes para diseñar y evolucionar diversos sistemas de administración de fármacos basados en la HA para el tratamiento del cáncer.
Descargas
Citas
Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015 Apr 3;348(6230):62-8. DOI:10.1126/science.aaa4967
Nie F, Yu X, Huang M, Wang Y, Xie M, Ma H, et al. Long noncoding RNA ZFAS1 promotes gastric cancer cells proliferation by epigenetically repressing KLF2 and NKD2 expression. Oncotarget. 2017 Jun 6;8(24):38227. DOI: 10.18632/oncotarget.9611
Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer. 2010 Dec 15;127(12):2893-917. DOI:10.1002/ijc.25516
Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, et al. Cancer treatment and survivorship statistics, 2012. CA: A cancer journal for clinicians. 2012 Jul;62(4):220-41. DOI:10.3322/caac.21149
Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA: A cancer journal for clinicians. 2010 Sep;60(5):277-300. DOI:10.3322/caac.20073
McGuire S. World cancer report 2014. Geneva, Switzerland: World Health Organization, international agency for research on cancer, WHO Press, 2015. Advances in nutrition. 2016 Mar;7(2):418-9. DOI: https://doi.org/10.3945/an.116.012211
Arruebo M, Vilaboa N, Sáez-Gutierrez B, Lambea J, Tres A, Valladares M. Assessment of the evolution of cancer treatment therapies. Cancers (Basel). 2011 Aug 12;3(3):3279-330. DOI:10.3390/cancers3033279
Kayl AE, Meyers CA. Side-effects of chemotherapy and quality of life in ovarian and breast cancer patients. Current opinion in obstetrics and gynecology. 2006 Feb 1;18(1):24-8. DOI: 10.1097/01.gco.0000192996.20040.24
Shah K, Crowder D, Overmeyer J, Maltese W, Yun Y. Hyaluronan drug delivery systems are promising for cancer therapy because of their selective attachment, enhanced uptake, and superior efficacy. Biomedical Engineering Letters. 2015 Jun;5(2):109-23.
Luo Z, Dai Y, Gao HJAPSB. Development and application of hyaluronic acid in tumor targeting drug delivery. Acta Pharm. Sin. B. 2019 Nov 1;9(6):1099-112. DOI:1016/j.apsb.2019.06.004
Huang G, Huang H. Hyaluronic acid-based biopharmaceutical delivery and tumor-targeted drug delivery system. J. Controlled Release. 2018 May 28; 278:122-6. DOI:10.1016/j.jconrel.2018.04.015
Robert L. Hyaluronan, a truly “youthful” polysaccharide. Its medical applications. Pathol. Biol. 2015 Feb 1;63(1):32-4. DOI:10.1016/j.patbio.2014.05.019
Reed RK, Lilja K, Laurent TC. Hyaluronan in the rat with special reference to the skin. Acta Physiol. Scand. 1988 Nov;134(3):405-11. DOI:10.1111/j.1748-1716.1988.tb08508.x
Schaefer L, Schaefer RM. Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res. 2010 Jan;339(1):237-46.
Lee SY, Kang MS, Jeong WY, Han DW, Kim KS. Hyaluronic acid-based theranostic nanomedicines for targeted cancer therapy. Cancers 2020 Apr 10;12(4):940. DOI:10.3390/cancers12040940
Ossipov DA. Nanostructured hyaluronic acid-based materials for active delivery to cancer. Expert Opin. Drug Delivery. 2010 Jun 1;7(6):681-703. DOI:10.1517/17425241003730399
Huang G, Huang H. Application of hyaluronic acid as carriers in drug delivery. Drug delivery. 2018 Jan 1;25(1):766-72. DOI:10.1080/10717544.2018.1450910
Meyer K, Palmer JW. On the nature of the ocular fluids. Am. J. Ophthalmol. 1936 Oct 1;19(10):859-65. DOI:10.1016/S0002-9394(36)92723-X
Kogan G, Šoltés L, Stern R, Schiller J, Mendichi R. Hyaluronic acid: its function and degradation in in vivo systems. Studies in natural products chemistry. 34: Elsevier; 2008 Jan 1;34:789-882. DOI:10.1016/S1572-5995(08)80035-X
Ito Y. Growth Factors and Protein-Modified Surfaces and Interfaces. In Comprehensive Biomaterials, Ducheyne P (Ed), 4.416: Elsevier; 2011,247-279. DOI:10.1016/B978-0-08-055294-1.00263-4.
Fallacara A, Baldini E, Manfredini S, Vertuani S. Hyaluronic acid in the third millennium. Polymers. 2018;10(7):701. DOI:10.3390/polym1007070
Snetkov P, Zakharova K, Morozkina S, Olekhnovich R, Uspenskaya M. Hyaluronic acid: The influence of molecular weight on structural, physical, physicochemical, and degradable properties of biopolymer. Polymers.2020;12(8):1800. DOI:10.3390/polym12081800
Ignatova EY, Gurov AJPCJ. Principles of extraction and purification of hyaluronic acid. Pharm. Chem. J. 1990;24(3):211-216.
Selyanin MA, Boykov PY, Khabarov VN, Polyak FJ. Properties, Application in Biology, Medicine. The History of Hyaluronic Acid Discovery, Foundational Reserch and Initial Use. In Hyaluronic Acid. John Wiley & Sons, Ltd; 2015:1-8. DOI:10.1002/9781118695920
Zhong W, Pang L, Feng H, Dong H, Wang S, Cong H, et al. Recent advantage of hyaluronic acid for anticancer application: a review of “3S” transition approach. Carbohydr. Polym.. 2020; 238:116204. DOI:10.1016/j.carbpol.2020.116204
Liu E, Zhou Y, Liu Z, Li J, Zhang D, Chen J, et al. Cisplatin loaded hyaluronic acid modified TiO2 nanoparticles for neoadjuvant chemotherapy of ovarian cancer. J. Nanomater. 2015; DOI:10.1155/2015/390358.
Xin D, Wang Y, Xiang J. The use of amino acid linkers in the conjugation of paclitaxel with hyaluronic acid as drug delivery system: synthesis, self-assembled property, drug release, and in vitro efficiency. Pharm. Res. 2010;27(2):380-389.
El Kechai N, Bochot A, Huang N, Nguyen Y, Ferrary E, Agnely F. Effect of liposomes on rheological and syringe ability properties of hyaluronic acid hydrogels intended for local injection of drugs. International journal of pharmaceutics. 2015; 487(1-2):187-196. DOI:10.1016/j.ijpharm.2015.04.019
Park JK, Shim JH, Kang KS, Yeom J, Jung HS, Kim JY, et al. Solid free-form fabrication of tissue-engineering scaffolds with a poly (lactic-co-glycolic acid) grafted hyaluronic acid conjugate encapsulating an intact bone morphogenetic protein–2/poly (ethylene glycol) complex. Adv. Funct. Mater. 2011;21(15):2906-2912. DOI:10.1002/adfm.201100612
Chen ZX, Liu MD, Zhang MK, Wang SB, Xu L, Li CX, et al. Interfering with Lactate-Fueled Respiration for Enhanced Photodynamic Tumor Therapy by a Porphyrinic MOF Nanoplatform. Adv. Funct. Mater. 2018;28(36):1803498. DOI:10.1002/adfm.201803498
Gotov O, Battogtokh G, Ko Y. Docetaxel-loaded hyaluronic acid–cathepsin b-cleavable-peptide–gold nanoparticles for the treatment of cancer. Mol. Pharmaceutics. 2018;15(10):4668-4676. DOI: 10.1021/acs.molpharmaceut.8b0064
Yadav AK, Mishra P, Jain S, Mishra P, Mishra AK, Agrawal G. Preparation and characterization of HA–PEG–PCL intelligent core–corona nanoparticles for delivery of doxorubicin. J. Drug Targeting. 2008;6(6):464-478. DOI:10.1016/j.biomaterials.2011.01.021
Xiao K, Li Y, Luo J, Lee JS, Xiao W, Gonik AM, et al. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials. 2011; 32(13):3435-3446. DOI:10.1016/j.biomaterials.2011.01.021
Kim K, Choi H, Choi ES, Park M-H, Ryu J-HJP. Hyaluronic acid-coated nanomedicine for targeted cancer therapy. Pharmaceutics. 2019;11(7):301. DOI:10.3390/pharmaceutics11070301
Yin T, Wang J, Yin L, Shen L, Zhou J, Huo MJPC. Redox-sensitive hyaluronic acid–paclitaxel conjugate micelles with high physical drug loading for efficient tumor therapy. Polym. Chem. 2015;6(46):8047-8059.
Lee H, Ahn CH, Park TG. Poly [lactic-co-(glycolic acid)]-grafted hyaluronic acid copolymer micelle nanoparticles for target-specific delivery of doxorubicin. Macromol. Biosci. 2009; 9(4):336-342. DOI:10.1002/mabi.200800229
Lammers T, Subr V, Ulbrich K, Peschke P, Huber PE, Hennink WE, Storm G. Simultaneous delivery of doxorubicin and gemcitabine to tumors in vivo using prototypic polymeric drug carriers. Biomaterials. 2009 Jul 1;30(20):3466-75.
Li J, Huo M, Wang J, Zhou J, Mohammad JM, Zhang Y, et al. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Biomaterials. 2012; 33(7):2310-2320. DOI:10.1016/j.biomaterials.2011.11.022
Choi KY, Jeon EJ, Yoon HY, Lee BS, Na JH, Min KH, et al. Theragnostic nanoparticles based on PEGylated hyaluronic acid for the diagnosis, therapy and monitoring of colon cancer. Biomaterials. 2012;33(26):6186-6193. DOI:10.1016/j.biomaterials.2012.05.029
Qiu L, Li Z, Qiao M, Long M, Wang M, Zhang X, et al. Self-assembled pH-responsive hyaluronic acid–g-poly (l-histidine) copolymer micelles for targeted intracellular delivery of doxorubicin. Acta Biomater. 2014;10(5):2024-2035. DOI:10.1016/j.actbio.2013.12.025
Thomas RG, Moon M, Lee S, Jeong Y. Paclitaxel loaded hyaluronic acid nanoparticles for targeted cancer therapy: in vitro and in vivo analysis. Int. J. Biol. Macromol. 2015;, 72:510-518. DOI:10.1016/j.ijbiomac.2014.08.054
Shin JM, Oh SJ, Kwon S, Deepagan V, Lee M, Song SH, et al. A PEGylated hyaluronic acid conjugate for targeted cancer immunotherapy. J. Controlled Release. 2017; 267:181-190. DOI:10.1016/j.jconrel.2017.08.032
Mao H-L, Qian F, Li S, Shen J-W, Ye C-K, Hua L, et al. delivery of doxorubicin from hyaluronic acid-modified glutathione-responsive ferrocene micelles for combination cancer therapy. Mol. Pharmaceutics. 2019 Jan 9;16(3):987-994. DOI:10.1021/acs.molpharmaceut.8b00862
Taetz S, Bochot A, Surace C, Arpicco S, Renoir J-M, Schaefer UF, et al. Hyaluronic acid-modified DOTAP/DOPE liposomes for the targeted delivery of anti-telomerase siRNA to CD44-expressing lung cancer cells. Oligonucleotides. 2009;,19(2):103-116. DOI:10.1089/oli.2008.0168
Wojcicki AD, Hillaireau H, Nascimento TL, Arpicco S, Taverna M, Ribes S, et al. Hyaluronic acid-bearing lipoplexes: physico-chemical characterization and in vitro targeting of the CD44 receptor. J. Controlled Release. 2012; ,162(3):545-552. DOI:10.1016/j.jconrel.2012.07.015
Rivkin I, Cohen K, Koffler J, Melikhov D, Peer D, Margalit RJB. Paclitaxel-clusters coated with hyaluronan as selective tumor-targeted nanovectors. Biomaterials. 2010; 31(27):7106-7114. DOI:10.1016/j.biomaterials.2010.05.067
Yang X-y, Li Y-x, Li M, Zhang L, Feng L-x, Zhang NJCl. Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer. Cancer letters. 2013;, 334(2):338-345. DOI:10.1016/j.canlet.2012.07.002
Peer D, Margalit RJIJoC. Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models. Int. J. Cancer. 2004; 108(5):780-789. DOI:10.1002/ijc.11615
Bajaj G, Kim MR, Mohammed SI, Yeo YJJoCR. Hyaluronic acid-based hydrogel for regional delivery of paclitaxel to intraperitoneal tumors. J. Controlled Release. 2012;,158(3):386-392. DOI:10.1016/j.jconrel.2011.12.001
Jhan H-J, Liu J-J, Chen Y-C, Liu D-Z, Sheu M-T, Ho H-OJN. Novel injectable thermosensitive hydrogels for delivering hyaluronic acid–doxorubicin nanocomplexes to locally treat tumors. Nanomedicine. 2015;10(8):1263-1274. DOI:10.2217/nnm.14.211
Cho EJ, Sun B, Doh K-O, Wilson EM, Torregrosa-Allen S, Elzey BD, et al. Intraperitoneal delivery of platinum with in-situ crosslinkable hyaluronic acid gel for local therapy of ovarian cancer. Biomaterials. 2015;37:312-319. DOI:10.1016/j.biomaterials.2014.10.039
Fu C, Li H, Li N, Miao X, Xie M, Du W, et al. Conjugating an anticancer drug onto thiolated hyaluronic acid by acid liable hydrazone linkage for its gelation and dual stimuli-response release. Carbohydr. Polym. 2015; , 128:163-170. DOI:10.1016/j.carbpol.2015.04.024
Ueda K, Akiba J, Ogasawara S, Todoroki K, Nakayama M, Sumi A, et al. Growth inhibitory effect of an injectable hyaluronic acid–tyramine hydrogels incorporating human natural interferon-α and sorafenib on renal cell carcinoma cells. Acta Biomater. 2016;,29:103-111. DOI:10.1016/j.actbio.2015.10.024
Shin WJ, Noh HJ, Noh Y-W, Kim S, Um SH, Lim Y. Hyaluronic acid-supported combination of water insoluble immunostimulatory compounds for anticancer immunotherapy. Carbohydr. Polym. 2017;, 155:1-10. DOI:10.1016/j.carbpol.2016.08.040
Yang G, Fu S, Yao W, Wang X, Zha Q, Tang R, et al. Hyaluronic acid nanogels prepared via ortho ester linkages show pH-triggered behavior, enhanced penetration and antitumor efficacy in 3-D tumor spheroids. J. Colloid Interface Sci. 2017;, 504:25-38. DOI:10.1016/j.jcis.2017.05.033
Li J, Yang X, Yang P, Gao F, Chemistry N-M. Hyaluronic acid–conjugated silica nanoparticles for breast cancer therapy. Inorg. Nano-Met. Chem. 2017;47(5):777-782. DOI:10.1080/15533174.2016.1218509
Fu C, Yang R-M, Wang L, Li N-n, Qi M, Xu X-d, et al. Surface functionalization of superparamagnetic nanoparticles by an acid-liable polysaccharide-based prodrug for combinatorial monitoring and chemotherapy of hepatocellular carcinoma. RSC Adv. 2017;7(66):41919-41928.
Lee MS, Lee JE, Byun E, Kim NW, Lee K, Lee H, et al. Target-specific delivery of siRNA by stabilized calcium phosphate nanoparticles using dopa–hyaluronic acid conjugate. J. Controlled Release. 2014;92:122-130. DOI:10.1016/j.jconrel.2014.06.049
Wang H, Sun H, Wei H, Xi P, Nie S, Ren Q. Biocompatible hyaluronic acid polymer-coated quantum dots for CD44+ cancer cell-targeted imaging. J. Nanopart. Res. 2014;16(10):1-13.
Yang Y, Jing L, Li X, Lin L, Yue X, Dai Z. Hyaluronic acid conjugated magnetic prussian blue@ quantum dot nanoparticles for cancer theranostics. Theranostics. 2017;7(2):466.
Yun YH, Goetz DJ, Yellen P, Chen WJB. Hyaluronan microspheres for sustained gene delivery and site-specific targeting. Biomaterials. 2004;25(1):147-157. DOI:10.1016/S0142-9612(03)00467-8
Liu K, Wang Z-q, Wang S-j, Liu P, Qin Y-h, Ma Y, et al. Hyaluronic acid-tagged silica nanoparticles in colon cancer therapy: therapeutic efficacy evaluation. Int. J. Nanomed. 2015;10:6445.
Cho H-J, Yoon HY, Koo H, Ko S-H, Shim J-S, Lee J-H, et al. Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) and Pluronic® for tumor-targeted delivery of docetaxel. Biomaterials. 2011;32(29):7181-7190. DOI:10.1016/j.biomaterials.2011.06.028
Wang L, Jia E. Ovarian cancer targeted hyaluronic acid-based nanoparticle system for paclitaxel delivery to overcome drug resistance. Cancer Drug Delivery. 2016; 23(5):1810-1817. DOI:10.3109/10717544.2015.1101792
Nam J-P, Nah J-W. Target gene delivery from targeting ligand conjugated chitosan–PEI copolymer for cancer therapy. Carbohydr. Polym.. 2016;135:153-161. DOI:10.1016/j.carbpol.2015.08.053
Zheng D, Giljohann DA, Chen DL, Massich MD, Wang X-Q, Iordanov H, et al. Proc. Natl. Acad. Sci. 2012;109(30):11975-11980. DOI:10.1073/pnas.1118425109
Massich MD, Giljohann DA, Schmucker AL, Patel PC, Mirkin CA. Cellular Response of Polyvalent Oligonucleotide− Gold Nanoparticle Conjugates. ACS nano. 2010; 4(10):5641-5646.
Massich MD, Giljohann DA, Seferos DS, Ludlow LE, Horvath CM, Mirkin CAJMp. Regulating immune response using polyvalent nucleic acid− gold nanoparticle conjugates. Mol. Pharmaceutics. 2009;6(6):1934-1940. DOI:10.1021/mp900172m
Park K, Yang J-A, Lee M-Y, Lee H, Hahn SK. Reducible hyaluronic acid–siRNA conjugate for target specific gene silencing. Bioconjugate Chem. 2013;24(7):1201-1209. DOI:10.1021/bc4001257
Yin H, Zhao F, Zhang D, Li JJ. Hyaluronic acid conjugated β-cyclodextrin-oligoethylenimine star polymer for CD44-targeted gene delivery. Int. J. Pharm. 2015;483(1-2):169-179. DOI:10.1016/j.ijpharm.2015.02.022
Lee H, Lee K, Park TG. Hyaluronic acid− paclitaxel conjugate micelles: Synthesis, characterization, and antitumor activity. Bioconjugate chemistry. 2008;19(6):1319-1325. DOI:10.1021/bc8000485
Cai S, Thati S, Bagby TR, Diab H-M, Davies NM, Cohen MS, et al. Localized doxorubicin chemotherapy with a biopolymeric nanocarrier improves survival and reduces toxicity in xenografts of human breast cancer. J. Controlled Release. 2010;146(2):212-218. DOI:10.1021/bc8000485
Lee Y-H, Yoon HY, Shin JM, Saravanakumar G, Noh KH, Song K-H, et al. A polymeric conjugate foreignizing tumor cells for targeted immunotherapy in vivo. J. Controlled Release. 2015;199:98-105. DOI:10.1016/j.jconrel.2014.12.00
Liu Y, Qiao L, Zhang S, Wan G, Chen B, Zhou P, et al. Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy. Acta Biomater. Acta biomaterialia. 2018; 66:310-324. DOI:10.1016/j.actbio.2017.11.010
Chang J-E, Cho H-J, Yi E, Kim D-D, Jheon S. Hypocrellin B and paclitaxel-encapsulated hyaluronic acid–ceramide nanoparticles for targeted photodynamic therapy in lung cancer. Journal of Photochemistry and Photobiology B: Biology. 2016;158:113-121. DOI:10.1016/j.jphotobiol.2016.02.035
Zhong Y, Goltsche K, Cheng L, Xie F, Meng F, Deng C, et al. Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts in vivo. Biomaterials. 2016;84:250-261. DOI:10.1016/j.biomaterials.2016.01.049
Paliwal SR, Paliwal R, Agrawal GP, Vyas SP. Hyaluronic acid modified pH-sensitive liposomes for targeted intracellular delivery of doxorubicin. Journal of liposome research. 2016;26(4):276-287. DOI:10.3109/08982104.2015.1117489
Zhang B, Zhang Y, Yu D. Lung cancer gene therapy: Transferrin and hyaluronic acid dual ligand-decorated novel lipid carriers for targeted gene delivery. Oncol. Rep. 2017;37(2):937-944. DOI:10.3892/or.2016.5298
Xu Z, Wang Y, Zhang L, Huang L. Nanoparticle-delivered transforming growth factor-β siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment. ACS nano. 2014;8(4):3636-3645. DOI:10.1021/nn500216y
Lv Y, Xu C, Zhao X, Lin C, Yang X, Xin X, et al. Nanoplatform assembled from a CD44-targeted prodrug and smart liposomes for dual targeting of tumor microenvironment and cancer cells. Acs Nano. 2018;12(2):1519-1536. DOI:10.1021/acsnano.7b08051
Deng X, Cao M, Zhang J, Hu K, Yin Z, Zhou Z, et al. Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials. 2014;, 35(14):4333-4344. DOI:10.1016/j.biomaterials.2014.02.006
Khatun Z, Nurunnabi M, Nafiujjaman M, Reeck GR, Khan HA, Cho KJ, et al. A hyaluronic acid nanogel for photo–chemo theranostics of lung cancer with simultaneous light-responsive controlled release of doxorubicin. Nanoscale. 2015;7(24):10680-10689.
Wang Z, Chen Z, Liu Z, Shi P, Dong K, Ju E, et al. A multi-stimuli responsive gold nanocage–hyaluronic platform for targeted photothermal and chemotherapy. Biomaterials. 2014;35(36):9678-88. DOI:10.1016/j.biomaterials.2014.08.013
Ganesh S, Iyer AK, Morrissey DV, Amiji MM. Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors. Biomaterials. 2013;34(13):3489-3502. DOI:10.1016/j.biomaterials.2013.01.077
Jiang G, Park K, Kim J, Kim KS, Oh EJ, Kang H, et al. Hyaluronic acid–polyethyleneimine conjugate for target specific intracellular delivery of siRNA. Biopolymers: Original Research on Biomolecules. 2008;89(7):635-642. DOI:10.1002/bip.20978
Lee H, Mok H, Lee S, Oh Y-K, Park TG. Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels. J. Controlled Release. 2007;119(2):245-252. DOI:10.1016/j.jconrel.2007.02.011
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Garima Gupta, Pulkit Asati, Pranjul Jain, Pranali Mishra, Ankit Mishra, Pradeep Singour
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos que se publican en esta revista están sujetos a los siguientes términos en relación a los derechos patrimoniales o de explotación:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, la cual se distribuirá con una licencia Creative Commons BY-NC-SA 4.0 que permite a terceros reutilizar la obra siempre que se indique su autor, se cite la fuente original y no se haga un uso comercial de la misma.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la fuente original de su publicación.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en repositorios institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).