Naringina: potencial antitumoral in silico e in vitro en células cancerosas de vejiga
DOI:
https://doi.org/10.30827/ars.v63i2.22430Palabras clave:
cáncer de vejiga; flavonoide; in silico; naringina; progresión del ciclo celularResumen
Introducción: el carcinoma urotelial es un problema de salud pública importante. El carcinoma de células de transición es el subtipo más común y representa aproximadamente el 90 % de todos los cánceres de vejiga. Se han estudiado protocolos quimioterapéuticos, pero algunos presentan alta toxicidad y baja tolerabilidad. La naringina es un compuesto polifenólico que se encuentra principalmente en los cítricos, cuya actividad antitumoral se ha estudiado en varios tipos de cáncer. Sin embargo, hay poca información sobre los efectos de la naringina en el cáncer de vejiga. Este estudio tuvo como objetivo evaluar el potencial antitumoral de la naringina in silico e in vitro utilizando dos líneas celulares de cáncer de vejiga.
Método: el análisis in silico se llevó a cabo mediante el software PASS Online. In vitro, se evaluaron los efectos del tratamiento con naringina (12,5 - 400 µM) en cuanto a su citotoxicidad, supervivencia clonogénica, alteraciones morfológicas, progresión del ciclo celular, migración y mutagenicidad.
Resultados: los análisis in silico predijeron la actividad antitumoral a través de varios mecanismos de acción. Los resultados in vitro mostraron que la naringina presentó efectos citotóxicos, redujo el número de colonias, inhibió la migración celular y cambió la morfología y la progresión del ciclo celular de las dos líneas celulares evaluadas. Sin embargo, la naringina no presentó efectos mutagénicos.
Conclusiones: la naringina tiene actividad antiproliferativa y es un candidato prometedor para el tratamiento del cáncer de vejiga.
Descargas
Citas
Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, et al. Cancer statistics for the year 2020: An overview. Int J Cancer. 2021;144(8):1941-1953. doi: 10.1002/ijc.31937
Sanli O, Dobruch J, Knowles MA, Burger M, Alemozaffar M, Nielsen ME, et al. Bladder cancer. Nat Rev Dis Primers. 2017;3(17022):1-19. doi: 10.1038/nrdp.2017.22
Chang SS, Bochner BH, Chou R, Dreicer R, Kamat AM, Lerner SP, et al. Treatment of non-metastatic muscle-invasive bladder cancer: AUA/ASCO/ASTRO/SUO Guideline. J Urol. 2017;198(3):552-559. doi: 10.1016/j.juro.2017.04.086
Lin SR, Chang CH, Hsu CF, Tsai MJ, Cheng H, Leong MK, et al. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence. Br J Pharmacol. 2020;177(6):1409-1423. doi: 10.1111/bph.14816
Dutta S, Mahalanobish S, Saha S, Ghosh S, Sil PC. Natural products: An upcoming therapeutic approach to cancer. Food Chem Toxicol. 2019;128:240-255. doi: 10.1016/j.fct.2019.04.012
Chen R, Qi QL, Wang MT, Li QY. Therapeutic potential of naringin: an overview. Pharm Biol. 2016;54(12):3203-3210. doi: 10.1080/13880209.2016.1216131
Ghanbari-Movahed M, Jackson G, Farzaei MH, Bishayee A. A systematic review of the preventive and therapeutic effects of naringin against human malignancies. Front Pharmacol. 2021;12:639840. doi: 10.3389/fphar.2021.639840
Kim DI, Lee SJ, Lee SB, Park K, Kim WJ, Moon SK. Requirement for Ras/Raf/ERK pathway in naringin-induced G1-cell-cycle arrest via p21WAF1 expression. Carcinogenesis. 2008;29(9):1701-1709. doi: 10.1016/j.prnil.2017.11.001
Pereira GLDC, Almeida TC, Seibert JB, Amparo TR, Soares RDOA, Rodrigues IV, et al. Antitumor effect of Cymbopogon densiflorus (Linneu) essential oil in bladder cancer cells. Nat Prod Res. 2020; 2:1-5. doi: 10.1080/14786419.2020.1747453
Da Silva GN, de Castro Marcondes JP, de Camargo EA, Junior GASP, Sakamoto-Hojo, Salvadori DMF. Cell cycle arrest and apoptosis in TP53 subtypes of bladder carcinoma cell lines treated with cisplatin and gemcitabine. Exp Biol Med (Maywood). 2010;235(7):814-824. doi: 10.1258/ebm.2010.009322
Lima APB, Almeida TC, Barros TMB, Rocha LCM, Garcia CCM, Da Silva GN. Toxicogenetic and antiproliferative effects of chrysin in urinary bladder cancer cells. Mutagenesis. 2020;1(5):1-11. doi: 10.1093/mutage/geaa021
Sávio ALV, Da Silva GN, Salvadori DMF. Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil). Mutat Res. 2015;771:29-35. doi: 10.1016/j.mrfmmm.2014.11.004
Da Silva GN, De Camargo EA, Salvadori DMF. Toxicogenomic activity of gemcitabine in two TP53-mutated bladder cancer cell lines: special focus on cell cycle-related genes. Mol Biol Rep. 2012;39(12):10373-10382. doi: 10.1007/s11033-012-1916-1
Almeida TC, Guerra CCC, De Assis BLG, Soares RDOA, Garcia CCM, Lima AAL, et al. Antiproliferative and toxicogenomic effects of resveratrol in bladder cancer cells with different TP53 status. Environ Mol Mutagen. 2019;60(8):740-751. doi: 10.1002/em.22297
Barros TMB, Lima APB, Almeida TC, Da Silva GN. Inhibition of urinary bladder cancer cell proliferation by silibinin. Environ Mol Mutagen. 2020;61(4):445-455. doi: 10.1002/em.22363
Fenech M. The in vitro micronucleus technique. Mutat Res. 2000;455(1-2):81-95. doi: 10.1016/s0027-5107(00)00065-8
Achary PGR. Applications of quantitative structure-activity relationships (QSAR) based virtual screening in drug design: A review. Mini Rev Med Chem. 2020;20(14):1375-1388. doi: 10.2174/1389557520666200429102334
Elmore S. Apoptosis: A review of programmed cell death. Toxicol Pathol. 2007;35(4):495-516. doi: 10.1080/01926230701320337
Slee EA, Adrain C, Martin SJ. Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem. 2001;276:7320-7326. doi: 10.1074/jbc.M008363200
Banjerdpongchai R, Wudtiwai B, Khawon P. Induction of human hepatocellular carcinoma HepG2 cell apoptosis by naringin. Asian Pac J Cancer Prev. 2016;17(7):3289-3294.
Tsuboi A, Ohsawa S, Umetsu D, Sando Y, Kuranaga E, Igaki T, et al. Competition for space is controlled by apoptosis-induced change of local epithelial topology. Curr Biol. 2018;28(13):2115-2128. doi: 10.1016/j.cub.2018.05.029
Xu X, Lai Y, Hua ZC. Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep. 2019;39(1):1-17. doi: 10.1042/BSR20180992
Munshi A, Hobbs M, Meyn RE. Clonogenic cell survival assay. Methods Mol Med. 2005;110:21-28. doi: 10.1385/1-59259-869-2:021
Tannock IF, Lee C. Evidence against apoptosis as a major mechanism for reproductive cell death following treatment of cell lines with anti-cancer drugs. Br J Cancer. 2001;84:100-105. doi: 10.1054/bjoc.2000.1538
Xu C, Huang X, Huang Y, Liu X, Wu M, Wang J, et al. Naringin induces apoptosis of gastric carcinoma cells via blocking the PI3K/AKT pathway and activating pro‑death autophagy. Mol Med Rep. 2021;24(5):772. doi: 10.3892/mmr.2021.12412
Lin R, Hu X, Chen S, Shi Q, Chen H. Naringin induces endoplasmic reticulum stress-mediated apoptosis, inhibits β-catenin pathway and arrests cell cycle in cervical cancer cells. Acta Biochim Pol. 2020;67(2):181-188. doi: 10.18388/abp.2020_5182
Li H, Yang B, Huang J, Xiang T, Yin X, Wan J, et al. Naringin inhibits growth potential of human triple-negative breast cancer cells by targeting β-catenin signaling pathway. Toxicol Lett. 2013;220(3):219-228. doi: 10.1016/j.toxlet.2013.05.006
Walz S, Lorenzin F, Morton J, Wiese KE, Eyss BV, Herold S, et al. Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature. 2014;511:483-487. doi: 10.1038/nature13473
Zhou J, Xia L, Zhang Y. Naringin inhibits thyroid cancer cell proliferation and induces cell apoptosis through repressing PI3K/AKT pathway. Pathol Res Pract. 2019;215(12):152707. doi: 10.1016/j.prp.2019.152707
Aroui S, Aouey B, Chtourou Y, Meunier AC, Fetoui H, Kenani A. Naringin suppresses cell metastasis and the expression of matrix metalloproteinases (MMP-2 and MMP-9) via the inhibition of ERK-P38-JNK signaling pathway in human glioblastoma. Chem Biol Interact. 2016;244:195-203. doi: 10.1016/j.cbi.2015.12.011
Ming H, Chuang Q, Jiashi W, Bin L, Guangbin W, Xianglu J. Naringin targets Zeb1 to suppress osteosarcoma cell proliferation and metastasis. Aging. 2018;10(12):4141-4151. doi: 10.18632/aging.101710
Tan TW, Chou YE, Yang WH, Hsu CJ, Fong YC, Tang CH. Naringin suppress chondrosarcoma migration through inhibition vascular adhesion molecule-1 expression by modulating miR-126. Int Immunopharmacol. 2014;22(1):107-114. doi: 10.1016/j.intimp.2014.06.029
Saleh M, Khalil M, Abdellateif MS, Ebeid E, Madney Y, Kandeel EZ. Role of matrix metalloproteinase MMP-2, MMP-9 and tissue inhibitor of metalloproteinase (TIMP-1) in the clinical progression of pediatric acute lymphoblastic leukemia. Hematology. 2021;26(1):758-768. doi: 10.1080/16078454.2021.1978763
Zhu J, Li Y, Chen C, Ma J, Sun W, Tian Z, et al. NF-κB p65 overexpression promotes bladder cancer cell migration via FBW7-mediated degradation of RhoGDIα protein. Neoplasia. 2017;19(9):672-683. doi: 10.1016/j.neo.2017.06.002
Bacanli M, Başaran AA, Başaran N. The antioxidant and antigenotoxic properties of citrus phenolics limonene and naringin. Food Chem Toxicol. 2015;81:160-170. doi: 10.1016/j.fct.2015.04.01
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Gustavo Souza, Glenda da Silva
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos que se publican en esta revista están sujetos a los siguientes términos en relación a los derechos patrimoniales o de explotación:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, la cual se distribuirá con una licencia Creative Commons BY-NC-SA 4.0 que permite a terceros reutilizar la obra siempre que se indique su autor, se cite la fuente original y no se haga un uso comercial de la misma.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la fuente original de su publicación.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en repositorios institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).