Contenido principal del artículo

María del Carmen Ramírez Tortosa
Bioquímica y Biología molecular. Universidad de Granada
España
https://orcid.org/0000-0002-7999-0881
José María Gálvez-Navas
Universidad de Granada, Facultad de Farmacia, Departamento de Bioquímica y Biología Molecular II, Granada; Universidad de Granada, Centro de Investigaciones Biomédicas (CIBM), Instituto de Nutrición y Tecnología de los Alimentos “José Mataix” (INYTA), Armilla
España
Cristina Pérez-Ramírez
Universidad de Granada, Facultad de Farmacia, Departamento de Bioquímica y Biología Molecular II, Granada; Universidad de Granada, Centro de Investigaciones Biomédicas (CIBM), Instituto de Nutrición y Tecnología de los Alimentos “José Mataix” (INYTA), Armilla
España
Vol. 62 Núm. 4 (2021), Artículos de revisión, Páginas 438-450
DOI: https://doi.org/10.30827/ars.v62i4.21740
Recibido: jul 8, 2021 Aceptado: sep 3, 2021 Publicado: sep 20, 2021
Derechos de autor Cómo citar

Resumen

Introducción: el correcto funcionamiento y la supervivencia de la célula vienen mediados por multitud de procesos clave. El delicado equilibrio que se requiere entre dichos fenómenos hace que un error en los mecanismos de control desencadene el inicio de la carcinogénesis. Dentro de las rutas metabólicas encargadas de su regulación se encuentran las vías de señalización del Wnt. De esta forma, aquellas moléculas que intervengan en dichas vías presentarán un papel clave para el estudio de la patología, entre las que destaca secreted Frizzled – Related Protein 4 (sFRP4).


Método: se ha llevado a cabo una búsqueda bibliográfica en bases de datos de referencia, como es el caso de Medline, Scopus o Web of Science.


Resultados: a sFRP4 se le ha otorgado el papel de modulador negativo de las vías de Wnt debido a su capacidad de competir por los ligandos Wnt y evitar el inicio de dichas rutas. Por lo tanto, sFRP4 será esencial en el control del inicio y desarrollo del cáncer en aquellos tejidos donde se exprese la proteína, dentro de los que se considera el tejido mamario.


Conclusiones: los recientes estudios acerca de la implicación de sFRP4 en el desarrollo de diversas patologías, justifican que la proteína haya captado la atención en los últimos años. De esta forma, se puede afirmar que sFRP4 presenta un interesante potencial como biomarcador en el tratamiento, diagnóstico y pronóstico del cáncer de mama, entre otras enfermedades.

Descargas

La descarga de datos todavía no está disponible.

Detalles del artículo

Citas

Deshmukh A, Arfuso F, Newsholme P, Dharmarajan A. Epigenetic demethylation of sFRPs, with emphasis on sFRP4 activation, leading to Wnt signaling suppression and histone modifications in breast, prostate, and ovary cancer stem cells. Int J Biochem Cell Biol. 2019; 109:23–32. doi: 10.1016/j.biocel.2019.01.016

Granados-Principal S, Quiles JL, Ramírez-Tortosa C, et al. Hydroxytyrosol inhibits growth and cell proliferation and promotes high expression of sfrp4 in rat mammary tumours. Mol Nutr Food Res. 2011; 55(1):117–126. doi: 10.1002/mnfr.201000220

Pohl S, Scott R, Arfuso F, Perumal V, Dharmajaran A. Secreted frizzled – related protein 4 and its implications in cancer and apoptosis. Tumor Biol. 2014; 36(1):143–152. doi: 10.1007/s13277-014-2956-z

Vincent KM, Postovit L M. A pan – cancer analysis of secreted Frizzled – related proteins: re – examining their porposed tumour suppressive function. Sci Rep. 2017; 7:42719. doi: 10.1038/srep42719

Pawar NM, Rao P. Secreted frizzled – realted protein 4 (sFRP4) update: A brief review. Cell Signal. 2018; 45:63–70. doi: 10.1016/j.cellsig.2018.01.019

Vincent KM, Postovit LM. Matricellular proteins in cancer: a focus on secreted Frizzled – related proteins. J Cell Commun. 2018; 12(1):103–112. doi: 10.1007/s12079-017-0398-2

Yin P, Wang W, Zhang Z, Bai Y, Gao J, Zhao C. Wnt signaling in human and mouse breast cancer: Focusing on Wnt ligands, receptors and antagonists. Cancer Sci. 2018; 109(11):3368–3375. doi: 10.1111/cas.13771

Wu K, Li Z H, Yi W, et al. Restoration of secreted frizzled-related protein 1 suppresses growth and increases cisplatin sensitivity in laryngeal carcinoma cells by downregulating NHE 1. Int J Clin Exp Pathol. 2017; 10(8):8334–8343.

Baharudin R, Yew Fu Tieng F, Lee LH, Saykima Ab Mutalib N. Epigenetics of SFRP1: The Dual Roles in Human Cancers. Cancers. 2020; 12 (445):1–20. doi: 10.3390/cancers12020445

Yu J, XIe Y, Li M, et al. Association between SFRP promoter hypermethylation and different types of cancer: A systematic review and meta-analysis. Oncol Lett. 2019; 18(4):3481–3492. doi: 10.3892/ol.2019.10709

Liu Y, Zhou Q, Zhou D, Huang C, Meng X, Li J. Secreted frizzled-related protein 2-mediated cancer events: Friend or foe? Pharmacol Rep. 2017; 69(3):403–408. doi: 10.1016/j.pharep.2017.01.001

Huang C, Ye Z, Wan J, et al. Secreted Frizzled – Related Protein 2 Is Associated with Disease Progression and Poor Prognosis in Breast Cancer. Dis Markers. 2019:1– 8. doi: 10.1155/2019/6149381

Bernascone I, González T, Barea MD, et al. Sfrp3 modulates stromal-epithelial crosstalk during mammary gland development by regulating Wnt levels. Nat Commun. 2019; 10(1):1–17. doi: 10.1038/s41467-019-10509-1

Bravo D, Salduz A, Shogren KL, et al. Decreased local and systemic levels of sFRP3 protein in osteosarcoma patients. Gene. 2018; 674:1–7. doi: 10.1016/j.gene.2018.06.059

Claudel M, Jouzeau JY, Cailotto F. Secreted Frizzled – related proteins (sFRPs) in osteoarticular diseases: much more than simple antagonists of Wnt signaling? The FEBS J. 2019; 286(24):4832–4851. doi: 10.1111/febs.15119

Chen Y, Zou D, Wang N, et al. SFRP5 inhibits the migration and invasion of melanoma cells through Wnt signaling pathway. Onco Targets Ther. 2018; 11:8761–8772. doi: 10.2147/OTT.S181146

Xu Q, Lü Z, Wang X, Zhu Q, Wu H. Secreted frizzled – related protein 5 suppresses aggressive phenotype and reverses docetaxel resistance in prostate cancer. J Investig Med. 2019; 67(6):1009–1017. doi: 10.1136/jim-2018-000849

Lin HW, Fu C-F, Chang MC, et al. CDH1, DLEC1 and SFRP5 methylation panel as a prognostic marker for advanced epithelial ovarian cancer. Epigenomics. 2018; 10(11):1397–1413. doi: 10.2217/epi-2018-0035

Bukhari SA, Yasmin A, Zahoor MA, Mustafa G, Sarfraz I, Rasul A. Secreted frizzled – related protein 4 and its implication in obesity and type – 2 diabetes. Life. 2019; 71(11):1701–1710. doi: 10.1002/iub.2123

Azuma K, Zhou Q, Kubo K. Morphological and molecular characterization of the senile osteoporosis in senescence – accelerated mouse prone 6 (SAMP6). Med Mol Morphol. 2018; 51:139–146. doi: 10.1007/s00795-018-0188-9.

Bergmann K, Sypniewska G. Secreted frizzled – related protein 4 (SFRP4) and fractalkine (CX3CL1) – Potential new biomarkers for ß – cell dysfunction and diabetes. Clin Biochem. 2014; 47(7–8):529–532. doi: 10.1016/j.clinbiochem.2014.03.007

Gene: SFRP4 (ENSG00000106483) – Marked – up Sequence – Homo sapiens – Ensmbl Genome Browser 91. [monografía en Internet]. Granada: Ensembl.org.; 2021 [acceso 30 de marzo de 2021]. Disponible en: https://www.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000106483;r=7:37905932-38025695.

Kitazawa S, Haraguchi R, Kitazawa R. Morphology – oriented epigenetic research. Histochem Cell Biol. 2018; 150(1):3–12. doi: 10.1007/s00418-018-1675-8

Carmon KS, Loose DS. SFRP4 (Secreted Frizzled – Related Protein 4). Atlas Genet Cytogenet Oncol Hematol. 2010; 14 (3): 296 – 300.

Perumal V, Krishnan K, Gratton E, Dharmarajan AM, Fox SA. Number and brightness analysis of sFRP4 domains in live cells demonstrates vesicle association signal of the NLD domain and dynamic intracellular responses to Wnt3a. Int J Biochem Cell Biol. 2015; 64:91–96. doi: 10.1016/j.biocel.2015.03.010

Wilson DH, Jarman EJ, Mellin RP, et al. Non – canonical Wnt signaling regulates scarring in biliary diasease via the planar cell polarity receptors. Nat Commun. 2020; 11(1):11–13. doi: 10.1038/s41467-020-14283-3

Cassuto J, Folestad A, Göthlin J, Malchau H, Kärrholm J. The key role of proinflammatory cytokines, matrix proteins, RANKL/OPG and Wnt/β – catenin in bone healing of hip arthroplasty patients. Bone. 2017; 107:66–77. doi: 10.1016/j.bone.2017.11.004

Yang S, Wu Y, Xu TH, et al. Crystal structure of the Frizzled 4 receptor in a ligand-free state. Nature. 2018; 560(7720):666–670. doi: 10.1038/s41586-018-0447-x

Nusse R, Clevers H. Wnt/beta – Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell. 2017; 169(6):985–999. doi: 10.1016/j.cell.2017.05.016

Steinhart Z, Angers S. Wnt signaling in development and tissue homeostasis. Development. 2018; 145(11):1–8. doi: 10.1242/dev.146589

Galluzzi L, Spranger S, Fuchs E, López – Soto A. WNT Signaling in Cancer Immunosurveillance. Trends Cell Biol. 2019; 29 (1): 44 – 65. doi: 10.1016/j.critrevonc.2015.12.005

Chae W-J, Bothwell ALM. Canonical and Non-Canonical Wnt Signaling in Immune Cells. Trends Immunol. 2018; 39(10):830–847. doi: 10.1016/j.it.2018.08.006

van Schie EH, van Amerongen R. Aberrant Wnt/CTNNB1 Signaling as a Therapeutic Target in Human Breast Cancer: Weighing the Evidence. Front Cell Dev Biol. 2020; 8: 25. doi: 10.3389/fcell.2020.00025

Zhang S, Lin H, Kong S, et al. Physiological and molecular determinations of embryo implantation. Mol Asp Med. 2013; 34(5):939–980. doi: 10.1016/j.mam.2012.12.011

Gao C, Chen YG. Dishevelled: The hub of Wnt signaling. Cell Signal. 2010; 22(5):717–727. doi: 10.1016/j.cellsig.2009.11.021

Taciak B, Puszynska I, Kiraga L, Bialasek M, Krol M. Wnt signaling pathway in development and cancer. J Physiol Pharmacol. 2018; 96(2):185–196. doi: 10.26402/jpp.2018.2.07

van Andel H, Kocemba KA, Spaargaren M, Pals ST. Aberrant Wnt signaling in mulitple mieloma: molecular mechanism and targeting options. Leukemia. 2019; 33(5):1063–1075. doi: 10.1038/s41375-019-0404-1

Zhong Z, Virshup DM. Wnt Signaling and Drug Resistance in Cancer. Mol Pharmacol. 2020; 97(2):72–89. doi: 10.1124/mol.119.117978

Duchartre Y, Kim Y M, Kahn M. The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol. 2016; 99:141–149.

Katoh M. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int J Oncol. 2017; 51(5):1357–1369. doi: 10.3892/ijo.2017.4129

Nishita M, Saji T, Minami Y. [Non – canonical Wnt signaling and celular responses]. Clin Calcium. 2019; 29(3):291–297. doi: 10.20837/4201903291

Flores-Hernández E, Velázquez DM, Castañeda-Patlán MC, Fuentes-García G, Fonseca-Camarillo G, et al. Canonical and non-canonical Wnt signaling are simultaneously activated by Wnts in colon cancer cells. Cell Signal. 2020; 72: 109636.

Amal H, Gong G, Gjoneska E, Lewis S M, Wishnok JS, et al. S-nitrosylation of E3 ubiquitin-protein ligase RNF213 alters non-canonical Wnt/Ca+2 signaling in the P301S mouse model of tauopathy. Transl Psychiatry. 2019; 9(1):44. doi: 10.1038/s41398-019-0388-7

Li X, Ortiz M A, Kotula L. The physiological role of Wnt pathway in normal development and cancer. Exp Biol Med. 2020; 245(5):411–426. doi: 10.1177/1535370220901683

Uehara S, Udagawa N, Kobayashi Y. Non-canonical Wnt signals regulate cytoskeletal remodeling in osteoclasts. Cell Mol Life Sci. 2018; 75(20):3683–3692. doi: 10.1007/s00018-018-2881-1

Corda G, Sala A. Non-canonical WNT/PCP signalling in cancer: Fzd6 takes centre stage. Oncogenesis. 2017;6(7):e364. doi: 10.1038/oncsis.2017.69

López-Escobar B, Caro-Vega JM, Vijayraghavan D S, et al. The non – canonical Wnt – PCP pathway shapes the mouse caudal neural plate. Developmet. 2018; 145(9):1–15. doi: 10.1242/dev.157487

Wang M, Marco P, Capra V, Kibar Z. Update on the Role of the Non-Canonical Wnt/Planar Cell Polarity Pathway in Neural Tube Defects. Cells. 2019; 8(10):1198. doi: 10.3390/cells8101198

Zhan T, Rindtorff N, Boutrons M. Wnt signaling in cancer. Oncogene. 2017; 36(11):1461–1473. doi: 10.1038/onc.2016.304

Mäkitie RE, Constantini A, Kämpe A, Alm JJ, Mäkitie O. New Insights Into Monogenic Causes of Osteoporosis. Front Endocrinol (Lausanne). 2019; 10: 70. doi: 10.3389/fendo.2019.00070

Mandal S, Gamit N, Varier L, Dharmarajan A, Warrier S. Inhibition of breast cancer stem – like cells by a triterpenoid, ursolic acid, via activation of Wnt antagonist, sFRP4 and suppression of miRNA – 499a – 5p. Life Sci. 2021; 265: 118854. doi: 10.1016/j.lfs.2020.118854

Awasthi A, Hande MH, Rao P, Srinivas T, Hanumaiah G. Association of Secreted Frizzled Related Protein 4 with Type 2 Diabetes Mellitus and its complications: A South Indian hospital based case control study. Clin Epidemiology Glob Health. 2021; 9:171–174. doi:10.1016/j.cegh.2020.08.009

Tharmapalan P, Mahendrahingam M, Berman H K, Khokha R. Mammary stem cells and progenitors: targeting the roots of breast cancer for prevention. EMBO J. 2019; 38(14):1–19. doi: 10.15252/embj.2018100852

Visweswaran M, Keane KN, Arfuso F, Dilley RJ, Newsholme P, Dharmarajan A. The Influence of Breast Tumor – Derived Factors and Wnt Antagonism on the transformation of Adiponse – Derived Mesenchymall Stem Cells Into Tumour – Associated Fibroblasts. Cancer Microenv. 2018; 11(1):71–84. doi: 10.1007/s12307-018-0210-8

Deshmukh A, Arfuso F, Newsholme P, Dharmarajan A. Regulation of Cancer Stem Cells Metabolism by Secreted Frizzled – Related Protein 4 (sFRP4). Cancers. 2018; 10(2):40. doi: 10.3390/cancers10020040

Mashhadikhan M, Kheiri H, Dehghanifard A. DNA methylation and gene expression of sFRP2, sFRP4, Dkk1, and Wif1 during osteoblastic differentiation of bone marrow derived mesenchymal stem cells. J Oral Biosci. 2020; 62(4):394–356. doi: 10.1016/j.job.2020.08.001

Li A, Schleicher SM, Andre F, Mitri ZI. Genomic Alteration in Metastasic Breast Cancer and Its Treatment. Am Soc Clin Oncol Educ Book. 2020; 40:1–14. doi: 10.1200/EDBK_280463

Testa V, Castelli G, Pelosi E. Breast Cancer: A Moleculary Heterogeneous Disease Needing Subtype – Specific Treatment. Med Sci. 2020; 8(1):18. doi: 10.3390/medsci8010018

Ayala de la Peña F, Andrés R, García-Sáenz JA, Manso L, Margelí M, et al. SEOM clinical guidelines in early stage breast cancer. Clin Transl Oncol. 2018; 21(1):18–30. doi: 10.1007/s12094-018-1973-6

Chacón López-Muñiz JI, de la Cruz Merino L, Gavilá Gregori J, et al. SEOM clinical guidelines in advanced and recurrent breast cancer. Clin Transl Oncol. 2018; 21(1):31–45. doi: 10.1007/s12094-018-02010-w

Deshmukh A, Kumar S, Arfuso F, Newsholme P, Dharmarajan A. Secreted Frizzled – Related Protein 4 (sFRP4) chemo – sensitizes cancer stem cells derived from human breast, prostate, and ovary human cell lines. Sci Rep. 2017; 7(1):2256. doi: 10.1038/s41598-017-02256-4

Cook D J, Kallus J, Jörnsten R, Nielsen J. Molecular natural history of breast cancer: Leveraging transcriptomics to predict breast cancer progression and aggressiveness. Cancer Med. 2020; 9(10):3551–3562. doi: 10.1002/cam4.2996

Bhuvanalakshmi G, Basappa, Rangappa KS, et al. Breast Cancer Stem – Like Cells Are Inhibited by Diosgenin, a Steroida Saponin, by the Attenuation of Wnt β – catenin Signaling via the Wnt Antagonist Secreted Frizzled Related Protein – 4. Front Pharmacol. 2017; 8:124. doi: 10.3389/fphar.2017.00124