Estudio comparativo de las actividades in vitro de productos comerciales de polimixina B sobre Pseudomonas aeruginosa aislada de pacientes hospitalizados

Autores/as

  • Rezvan Goodarzi Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
  • Farhad Farahani Hearing Impairment Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
  • Mahdane Roshani Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
  • Mohammad Taheri Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
  • Babak Asghari Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran

DOI:

https://doi.org/10.30827/ars.v62i3.17851

Palabras clave:

Pseudomonas aeruginosa, productos con polimixina B, método de microdilución en caldo

Resumen

Introducción: La polimixina B se ha aplicado como uno de los antibióticos de último recurso para el tratamiento de la multirresistencia entre las infecciones bacterianas Gram negativas. Debido a efectos secundarios como toxicidad renal, el uso de polimixina se asocia con limitaciones. El presente estudio evalúa la actividad antibacteriana in vitro de varios productos comerciales de polimixina B contra Pseudomonas aeruginosa.

Métodos: Este estudio incluyó 63 aislados de P. aeruginosa no duplicados que se examinaron para la prueba de susceptibilidad in vitro a la polimixina B utilizando los siguientes discos de polvo: sulfato de polimixina B, otosporina, Poly-Mxb y Myxacort. También se han identificado las MIC50 y MIC90 para los antibióticos de polimixina B.

Resultados: Myxacort tuvo una actividad funcional contra la mayoría de los aislados de P. aeruginosa, y sólo siete aislados tuvieron una CIM relativamente alta. Las actividades de Poly-MXb y Myxacort fueron las mismas que las de otosporina.

Conclusiones: Nuestros resultados revelaron que el producto genérico nacional de polimixina B (Myxacort), y dos productos externos (Otosporin, Poly-MXb) son similares en términos de actividad microbiológica.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Cerceo E, Deitelzweig SB, Sherman BM, Amin AN. Multidrug-resistant gram-negative bacterial infections in the hospital setting: overview, implications for clinical practice, and emerging treatment options. Microb Drug Resist 2016; 22(5): 412-31. doi: 10.1089/mdr.2015.0220

Velkov T, Thompson PE, Nation RL, Li J. Structure activity relationships of polymyxin antibiotics. J Med Chem 2010; 53(5): 1898-916. doi: 10.1021/jm900999h.

Karaiskos I, Lagou S, Pontikis K, Rapti V, Poulakou G. The “old” and the “new” antibiotics for MDR gram-negative pathogens: for whom, when, and how. Front Public Health 2019; 7: 151. doi: 10.3389/fpubh.2019.00151

Zhang L, Dhillon P, Yan H, Farmer S, Hancock RE. Interactions of Bacterial Cationic Peptide Antibiotics with Outer and Cytoplasmic Membranes of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2000; 44(12): 3317-21. doi: 10.1128/aac.44.12.3317-3321.2000.

Poirel L, Jayol A, Nordmann P. Polymyxins: Antibacterial Activity, Susceptibility Testing, and Resistance Mechanisms Encodedby Plasmids or Chromosomes. Clin Microbiol Rev 2017; 30(2): 557-96. doi: 10.1128/CMR.00064-16.

Li Z, Cao Y, Yi L, Liu JH, Yang Q. Emergent Polymyxin Resistance: End of an Era? Open Forum Infect Dis 2019 Oct 1; 6(10). pii: ofz368. doi: 10.1093/ofid/ofz368

Garg SK, Singh O, Juneja D, et al. Resurgence of polymyxin B for MDR/XDR gram-negative infections: An overview of current evidence. Crit Care Res Pract 2017; 2017: 3635609. doi: 10.1155/2017/3635609

Li B, Webster TJ. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. J Orthop Res 2018; 36(1): 22-32. doi: 10.1002/jor.23656

Velkov T, Roberts KD, Nation RL, Thompson PE, Li J. Pharmacology of polymyxins: new insights into an ‘old’class of antibiotics. Future Microbiol 2013; 8(6): 711-24. doi: 10.2217/fmb.13.39

Hermsen ED, Sullivan CJ, Rotschafer JC. Polymyxins: pharmacology, pharmacokinetics, pharmacodynamics, and clinical applications. Infect Dis Clin North Am 2003; 17(3): 545-62. doi: 10.1016/s0891-5520(03)00058-8.

Dafale NA, Semwal UP, Rajput RK, Singh GN. Selection of appropriate analytical tools to determine the potency and bioactivity of antibiotics and antibiotic resistance. J Pharm Anal 2016; 6(4): 207-13. doi: 10.1016/j.jpha.2016.05.006

Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; twenty-fifth informational supplement. Wayne (PA): Clinical and Laboratory Standards Institute, 2018.

Krishnamurthy M, Lemmon MM, Falcinelli EM, Sandy RA, Dootz JN, Mott TM, Rajamani S, Schaecher KE, Duplantier AJ, Panchal RG. Enhancing the antibacterial activity of polymyxins using a nonantibiotic drug. Infection and drug resistance. 2019;12:1393. doi: 10.2147/IDR.S196874.

Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Frontiers in microbiology. 2014;5:643. doi: 10.3389/fmicb.2014.00643.

Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. The Lancet infectious diseases. 2016;16(2):161-8. doi: 10.1016/S1473-3099(15)00424-7

Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother 2001; 48(Suppl 1): 5-16. doi: 10.1093/jac/48.suppl_1.5.

Sader HS, Rhomberg PR, Flamm RK, Jones RN. Use of a surfactant (polysorbate 80) to improve MIC susceptibility testing results for polymyxin Band colistin. Diagn Microbiol Infect Dis 2012; 74(4): 412-4. doi: 10.1016/j.diagmicrobio.2012.08.025

Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 2015; 109(7): 309-18. doi: 10.1179/2047773215Y.0000000030

Chojnacki M, Philbrick A, Wucher B, et al. Development of a broad-spectrum antimicrobial combination for the treatment of Staphylococcus aureus and Pseudomonas aeruginosa corneal infections. Antimicrob Agents Chemother 2018; 63(1): e01929-18. doi: 10.1128/AAC.01929-18.

Doi Y. Treatment Options for Carbapenem-resistant Gram-negative Bacterial Infections. Clin Infect Dis 2019; 69 (Suppl 7): S565-S575. doi: 10.1093/cid/ciz830. Simar S, Sibley D, Ashcraft D, Pankey G. Colistin and polymyxin b minimal inhibitory concentrations determined by etest found unreliable for gram-negative bacilli. Ochsner J 2017; 17(3): 239-42. doi: 10.1043/1524-5012-17.3.239

Turlej-Rogacka A, Xavier BB, Janssens L, et al. Evaluation of colistin stability in agar and comparison of four methods for MIC testing of colistin. Eur J Clin Microbiol Infect Dis 2018; 37(2): 345-53. doi: 10.1007/s10096-017-3140-3.

Doymaz MZ, Karaaslan E. Comparison of antibacterial activities of polymyxin B and colistin against multidrug resistant Gram negative bacteria. Infect Dis (Lond) 2019; 51(9): 676-82. doi: 10.1080/23744235.2019.1640386.

Ezadi F, Ardebili A, Mirnejad R. Antimicrobial susceptibility testing for polymyxins: challenges, issues, and recommendations. Journal of clinical microbiology. 2019;57(4). doi: 10.1128/JCM.01390-18

Jerke KH, Lee MJ, Humphries RM. Polymyxin susceptibility testing: a cold case reopened. Clinical Microbiology Newsletter. 2016;38(9):69-77. doi:10.1016/j.clinmicnews.2016.04.003

http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/General_documents/Recommendations_for_MIC_determination_of_colistin_March_2016.pdf.

Gales AC, Jones RN, Sader HS. Global assessment of the antimicrobial activity of polymyxin B against 54 731 clinical isolates of Gram-negative bacilli: report from the SENTRY antimicrobial surveillance programme (2001–2004). Clinical microbiology and infection. 2006;12(4):315-21. doi: 10.1111/j.1469-0691.2005.01351.x.

Wilhelm CM, Nunes LD, Martins AF, Barth AL. In vitro antimicrobial activity of imipenem plus amikacin or polymyxin B against carbapenem-resistant Pseudomonas aeruginosa isolates. Diagnostic microbiology and infectious disease. 2018;92(2):152-4. doi: 10.1016/j.diagmicrobio.2018.05.004.

Kvitko CH, Rigatto MH, Moro AL, Zavascki AP. Polymyxin B versus other antimicrobials for the treatment of Pseudomonas aeruginosa bacteraemia. Journal of Antimicrobial Chemotherapy. 2011;66(1):175-9. doi: 10.1093/jac/dkq390

Publicado

2021-06-21

Cómo citar

1.
Goodarzi R, Farahani F, Roshani M, Taheri M, Asghari B. Estudio comparativo de las actividades in vitro de productos comerciales de polimixina B sobre Pseudomonas aeruginosa aislada de pacientes hospitalizados. Ars Pharm [Internet]. 21 de junio de 2021 [citado 26 de abril de 2024];62(3):270-9. Disponible en: https://revistaseug.ugr.es/index.php/ars/article/view/17851

Número

Sección

Artículos Originales