Diseño de estudios Gauge R&R cruzado y anidado para la validación de los modelos matemáticos de Heckel y Ryshkewitch-Duckworth
DOI:
https://doi.org/10.30827/ars.v62i2.17734Palabras clave:
Validación de sistemas de medición, variación, Gauge R&R cruzado, Gauge R&R anidado, análisis de varianzaResumen
Introducción: Los estudios gauge permiten ganar información sobre el desempeño de procesos y son de utilidad para control de calidad, así como identificación de fuentes de variación. El objetivo del presente estudio, fue diseñar y analizar sistemas de medición para los modelos de Heckel y Ryshkewitch-Duckworth para caracterizar materiales, a través de estudios Gauge R&R.
Método: Estudio Gauge R&R cruzado para evaluar el sistema de medición del peso y estudio Gauge R&R anidado para el sistema de la resistencia a la fractura.
Resultados: Ambos estudios cumplieron con los supuestos de normalidad, varianza constante e independencia de los datos, por lo que fue posible determinar la significación de las fuentes de variación (factores) mediante un ANOVA así como su porcentaje de contribución. Para el estudio Gauge R&R cruzado los punzones evaluados contribuyen a la variación de la medición de manera significativa y en un 97,38% de la variación total; los operadores contribuyen en menos del 1% y de manera no significativa y no existió interacción parte-operador. Respecto al estudio Gauge R&R anidado, se identificó que el operador no influyó de manera significativa en la variabilidad de la medición y que ésta es atribuible en un 95% a las diferencias existentes entre las tabletas evaluadas.
Conclusiones: Se realizó el diseño, ejecución y análisis de los sistemas de medición, destacando que en ambos estudios la principal fuente de variación fueron las partes evaluadas y que los operadores no contribuyen en la variabilidad de las mediciones, por lo que los estudios pueden usarse para evaluar los modelos matemáticos y durante el control estadístico de un proceso.
Descargas
Citas
Klevan I, Nordström J, Tho I, Alderborn G. A statistical approach to evaluate the potential use of compression parameters for classification of pharmaceutical powder materials. Eur J Pharm Biopharm. 2010;75(3):425-435. doi:10.1016/j.ejpb.2010.04.006
Roberts RJ, Rowe RC. Brittle/ductile behaviour in pharmaceutical materials used in tabletting. Int J Pharm. 1987;36(2-3):205-209. doi:10.1016/0378-5173(87)90157-8
ICH Expert Working Group. Pharmaceutical Development. Vol 4. (ICH, ed.). International Conference on Harmonisation; 2009:i-24. doi:10.1016/B978-0-12-802103-3.00003-1
Hüttenrauch R, Fricke S, Zielke P. Mechanical Activation of Pharmaceutical Systems. Pharm Res. 1985;2(6):302-306. doi:10.1023/A:1016397719020
United States Pharmacopeial Convention. <1062> Tablet Compression Characterization. In: Convention U, ed. United States Pharmacopeia and National Formulary 41. 41st ed. United States Pharmacopeial Convention; 2017.
Nordström J, Klevan I, Alderborn G. A protocol for the classification of powder compression characteristics. Eur J Pharm Biopharm. 2012;80(1):209-216. doi:10.1016/j.ejpb.2011.09.006
Denny PJ. Compaction equations: A comparison of the Heckel and Kawakita equations. Powder Technol. 2002;127(2):162-172. doi:10.1016/S0032-5910(02)00111-0
Ryshkewitch E. Compression Strength of Porous Sintered Alumina and Zirconia: 9th Communication to Ceramography. J Am Ceram Soc. 1953;36(2):65-68. doi:10.1111/j.1151-2916.1953.tb12837.x
Duckworth W. Discussion of Ryshkewitch Paper. J Am Ceram Soc. 1953;36(2):68. doi:10.1111/j.1151-2916.1953.tb12838.x
Kuentz M, Leuenberger H. A new theoretical approach to tablet strength of a binary mixture consisting of a well and a poorly compactable substance. Eur J Pharm Biopharm. 2000;49(2):151-159. doi:10.1016/S0939-6411(99)00078-8
Patel S, Kaushal AM, Bansal AK. Effect of particle size and compression force on compaction behavior and derived mathematical parameters of compressibility. Pharm Res. 2007;24(1):111-124. doi:10.1007/s11095-006-9129-8
Arndt OR, Kleinebudde P. Towards a better understanding of dry binder functionality. Int J Pharm. 2018;552(1-2):258-264. doi:10.1016/j.ijpharm.2018.10.007
Paul S, Sun CC. The suitability of common compressibility equations for characterizing plasticity of diverse powders. Int J Pharm. 2017;532(1):124-130. doi:10.1016/j.ijpharm.2017.08.096
Weaver BP, Hamada MS, Vardeman SB, Wilson AG. A Bayesian approach to the analysis of gauge R&R data. Qual Eng. 2012;24(4):486-500. doi:10.1080/08982112.2012.702381
Gao Z, Moore T, Smith AP, Doub W, Westenberger B, Buhse L. Gauge repeatability and reproducibility for accessing variability during dissolution testing: A technical note. AAPS PharmSciTech. 2007;8(4):2-6. doi:10.1208/pt0804092
Gao Z, Moore T, Smith AP, Doub W, Westenberger B. Studies of variability in Dissolution testing with USP Apparatus 2. J Pharm Sci. 2007;96(7):1794-1801. doi:10.1002/jps
Low A, Kok SL, Khong YM, Chan SY, Gokhale R. A New Test Unit for Disintegration End-Point Determination of Orodispersible Films. J Pharm Sci. 2015;104(11):3893-3903. doi:10.1002/jps.24609
Malladi J, Sidik K, Wu S, et al. Novel platens to measure the hardness of a pentagonal shaped tablet. Pharm Dev Technol. 2017;22(2):246-255. doi:10.1080/10837450.2016.1219370
Dejaegher B, Jimidar M, De Smet M, Cockaerts P, Smeyers-Verbeke J, Vander Heyden Y. Improving method capability of a drug substance HPLC assay. J Pharm Biomed Anal. 2006;42(2):155-170. doi:10.1016/j.jpba.2006.01.001
Castañeda HO, Hernández BE, Amador GE, Melgoza CLM. Production of directly compressible excipients with mannitol by wet granulation: Rheological, compressibility and compactibility characterization. Farmacia. 2019;67(6):973-985. doi:10.31925/farmacia.2019.6.7
Runger GC, Montgomery DC. Gauge capability and designed experiments. Part I basic methods. Qual Eng. 1993;6(1):115-135. doi:10.1080/08982119308918710
Montgomery DC, Runger GC. Gauge capability analysis and designed experiments. Part II: Experimental design models and variance component estimation. Qual Eng. 1993;6(2):289-305. doi:10.1080/08982119308918725
Johnson L, Deaner M. Necessary measures: Expanded gage R&R to detect and control measurement system variation. Qual Prog. 2014;47(7):34-38. doi:10.1145/1290958.1290969
Pan JN. Evaluating the gauge repeatability and reproducibility for different industries. Qual Quant. 2006;40(4):499-518. doi:10.1007/s11135-005-1100-y
Mullarney MP, Hancock BC. Mechanical property anisotropy of pharmaceutical excipient compacts. Int J Pharm. 2006;314(1):9-14. doi:10.1016/j.ijpharm.2005.12.052
Akseli I, Hancock BC, Cetinkaya C. Non-destructive determination of anisotropic mechanical properties of pharmaceutical solid dosage forms. Int J Pharm. 2009;377(1-2):35-44. doi:10.1016/j.ijpharm.2009.04.040
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Ars Pharmaceutica (Internet)
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos que se publican en esta revista están sujetos a los siguientes términos en relación a los derechos patrimoniales o de explotación:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, la cual se distribuirá con una licencia Creative Commons BY-NC-SA 4.0 que permite a terceros reutilizar la obra siempre que se indique su autor, se cite la fuente original y no se haga un uso comercial de la misma.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la fuente original de su publicación.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en repositorios institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).