Transporte autorregulador de fármacos: un sistema inteligente de administración de fármacos

Ashish Jain, Pradeep Kumar Mohanty

Resumen


Introducción: El objetivo principal de cualquier científico farmacéutico es desarrollar un sistema de administración de fármacos que sea seguro, efectivo, estable, que cumpla con los requisitos del paciente y cumpla con los requisitos de los clientes. Llevar a un gran interés de investigación para desarrollar el sistema de entrega de medicamentos que permitirá suministrar medicamentos «a demanda». Estos sistemas «sensibles a estímulos e inteligentes» han sido diseñados para administrar el farmaco en varios momentos o en varios sitios en el cuerpo, de acuerdo con un estímulo endógeno o aplicado externamente.

Objetivos: Este artículo tiene como objetivo revisar diversas investigaciones en el campo de los sistemas autorreguladores de administración de fármacos en forma tabular para que uno pueda utilizar estos hallazgos para un mayor desarrollo de sistemas inteligentes de administración de fármacos.

Método: Los investigadores han aplicado varios principios fisicoquímicos y esquemas químicos para obtener el patrón de liberación del fármaco según las necesidades del cuerpo. Dichos dispositivos se pueden usar para la administración inteligente de medicamentos necesarios para el tratamiento de muchas enfermedades, como la diabetes.

Resultados y discusión: Este tipo de sistema inteligente primero detecta las señales causadas por la enfermedad, juzga la magnitud de las señales y luego libera la droga en respuesta directa.

Conclusión: En este artículo, hemos discutido varias innovaciones en el campo de los sistemas autorreguladores de administración de fármacos y sugerimos que aquí hay mucho campo de investigación en este campo.


Palabras clave


Sistema inteligente de administración de fármacos; Autorregulador

Citas


Liu D , Yang F, Xiong F, Gu N. The Smart Drug Delivery System and Its Clinical Potential. Theranostics. 2016;6(9):1306-1323. DOI: 10.7150/thno.14858

Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C, et al. 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater. 2014;26:85-124. DOI: 10.1002/adma.201303233

Chang HI, Yeh MK. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine. 2012;7:49-60. DOI: 10.2147/ijn.s26766

Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Coll Surfaces B Biointerfaces. 2010;75:1-18. DOI: 10.1016/j.colsurfb.2009.09.001

Rossi F, Ferrari R, Castiglione F, Mele A, Perale G, Moscatelli D. Polymer hydrogel functionalized with biodegradable nanoparticles as composite system for controlled drug delivery. Nanotechnology. 2014;26:015602. DOI: 10.1088/0957-4484/26/1/015602

Shimoni O, Postma A, Yan Y, Scott AM, Heath JK, Nice EC. Macromolecule functionalization of disulfide-bonded polymer hydrogel capsules and cancer cell targeting. ACS Nano. 2012;6:1463-72. DOI: 10.1021/nn204319b

Stumpel JE, Gil ER, Spoelstra AB, Bastiaansen CW, Broer DJ, Schenning AP. Stimuli-Responsive Materials Based on Interpenetrating Polymer Liquid Crystal Hydrogels. Adv Fun Mater. 2015;25:3314-20. DOI: 10.1002/adfm.201500745

Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, et al. pH-Sensitive nano-systems for drug delivery in cancer therapy. Bio Adv. 2014;32:693-710. DOI: 10.1016/j.biotechadv.2013.11.009

Ganesh VA, Baji A, Ramakrishna S. Smart functional polymers-a new route towards creating a sustainable environment.RSC Adv. 2014;4:53352-64. DOI: 10.1039/c4ra10631h

Gao W, Chan JM, Farokhzad OC. pH-responsive nanoparticles for drug delivery. Mol Pharm. 2010;7:1913-20. DOI: 10.1021/mp100253e

Yu P, Yu H, Guo C, Cui Z, Chen X, Yin Q, et al. Reversal of doxorubicin resistance in breast cancer by mitochondria-targeted pH-responsive micelles. Acta Biomater. 2015;14:115-24. DOI: 10.1016/j.actbio.2014.12.001

Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12:991-1003. DOI: 10.1038/nmat3776

Huo M, Yuan J, Tao L, Wei Y. Redox-responsive polymers for drug delivery: from molecular design to applications. Poly Chem. 2014;5:1519-28. DOI: 10.1039/c3py01192e

Wang J, Sun X, Mao W, Sun W, Tang J, Sui M, et al. Tumor Redox Heterogeneity-Responsive Prodrug Nanocapsules for Cancer Chemotherapy. Adv Mater. 2013;25:3670-6. DOI: 10.1002/adma.201300929

Nguyen MM, Carlini AS, Chien MP, Sonnenberg S, Luo C, Braden RL, et al. Enzyme-Responsive Nanoparticles for Targeted Accumulation and Prolonged Retention in Heart Tissue after Myocardial Infarction. Adv Mater. 2015;27:5547-52. DOI: 10.1002/adma.201502003

Callmann CE, Barback CV, Thompson MP, Hall DJ, Mattrey RF, Gianneschi NC. Therapeutic Enzyme-Responsive Nanoparticles for Targeted Delivery and Accumulation in Tumors. Adv Mater. 2015;27:4611-5. DOI: 10.1002/adma.201501803

De La Rica R, Aili D, Stevens MM. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv Drug Deliv Rev. 2012;64:967-78. DOI: 10.1016/j.addr.2012.01.002

Lock LL, Tang Z, Keith D, Reyes C, Cui H. Enzyme-Specific Doxorubicin Drug Beacon as Drug-Resistant Theranostic Molecular Probes. ACS Macro Lett. 2015;4:552-5. DOI: 10.1021/acsmacrolett.5b00170

Shi Y, van den Dungen ET, Klumperman B, van Nostrum CF, Hennink WE. Reversible Addition-Fragmentation Chain Transfer Synthesis of a Micelle-Forming, Structure Reversible Thermosensitive Diblock Copolymer Based on the N-(2-Hydroxy propyl) Methacrylamide Backbone. ACS Macro Lett. 2013;2:403-8. DOI: 10.1021/mz300662b

Shi Y, van Steenbergen MJ, Teunissen EA, Novo Ls, Gradmann S, Baldus M, et al. Π-Π stacking increases the stability and loading capacity of thermosensitive polymeric micelles for chemotherapeutic drugs. Biomacromolecules. 2013;14:1826-37. DOI: 10.1021/bm400234c

Shi Y, Cardoso RM, Van Nostrum CF, Hennink WE. Anthracene functionalized thermosensitive and UV-crosslinkable polymeric micelles. Polym Chem. 2015;6:2048-53. DOI: 10.1039/c4py01759e

Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148:135-46. DOI: 10.1016/j.jconrel.2010.08.027

Adelsberger J, Kulkarni A, Jain A, Wang W, Bivigou-Koumba AM, Busch P, et al. Thermoresponsive PS-b-PNIPAM-b-PS micelles: aggregation behavior, segmental dynamics, and thermal response. Macromolecules. 2010;43:2490-501. DOI: 10.1021/ma902714p

Zhao Y, Fan X, Liu D, Wang Z. PEGylated thermo-sensitive poly (amidoamine) dendritic drug delivery systems. Int J Pharm. 2011;409:229-36. DOI: 10.1016/j.ijpharm.2011.02.005

Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov.2014;13:813-27. DOI: 10.1038/nrd4333

Lal S, Clare SE, Halas NJ. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res. 2008;41:1842-51. DOI: 10.1021/ar800150g

Guo Q, Zhang T, An J, Wu Z, Zhao Y, Dai X, et al. Block versus Random Amphiphilic Glycopolymer Nanopaticles as Glucose-Responsive Vehicles. Biomacromolecules. 2015;16:3345-56. DOI: 10.1021/acs.biomac.5b01020

Wu Q, Wang L, Yu H, Wang J, Chen Z. Organization of glucose-responsive systems and their properties. Chem Rev.2011;111:7855-75. DOI: 10.1021/cr200027j

Gu Z, Aimetti AA, Wang Q, Dang TT, Zhang Y, Veiseh O, et al. Injectable nano-network for glucose-mediated insulin delivery.ACS Nano. 2013;7:4194-201. DOI: 10.1021/nn400630x

Yun J, Im JS, Lee Y-S, Kim H-I. Electro-responsive transdermal drug delivery behavior of PVA/PAA/MWCNT nanofibers. Eur Polym J. 2011;47:1893-902. DOI: 10.1016/j.eurpolymj.2011.07.024

Ying X, Wang Y, Liang J, Yue J, Xu C, Lu L, et al. Angiopep-Conjugated Electro-Responsive Hydrogel Nanoparticles: Therapeutic Potential for Epilepsy. Angewandte Chemie Int Ed. 2014;53:12436-40. DOI: 10.1002/anie.201403846

Curcio M, Spizzirri UG, Cirillo G, Vittorio O, Picci N, Nicoletta FP, et al. On demand delivery of ionic drugs from electro-responsive CNT hybrid films. RSC Advances. 2015;5:44902-11. DOI: 10.1039/c5ra05484b

Zhang L, Guo R, Yang M, Jiang X, Liu B. Thermo and pH Dual-Responsive Nanoparticles for Anti-Cancer Drug Delivery. Adv Mater. 2007;19:2988-92. DOI: 10.1002/adma.200601817

Zhang Z, Wang J, Chen C. Near-Infrared Light-Mediated Nanoplatforms for Cancer Thermo-Chemotherapy and Optical Imaging. Adv Mater. 2013;25:3869-80. DOI: 10.1002/adma.201301890

Jochum FD, Theato P. Thermo-and light responsive micellation of azobenzene containing block copolymers. Chem Communications. 2010;46:6717-9. DOI: 10.1039/c0cc01288b

Yang F, Hu S, Zhang Y, Cai X, Huang Y, Wang F, et al. A Hydrogen Peroxide-Responsive O2 Nanogenerator for Ultrasound and Magnetic-Resonance Dual Modality Imaging. Adv Mater. 2012;24:5205-11. DOI: 10.1002/adma.201202367

Yang F, Zhang M, He W, Chen P, Cai X, Yang L, et al. Controlled release of Fe3O4 nanoparticles in encapsulated microbubbles to tumor cells via sonoporation and associated cellular bioeffects. Small. 2011;7:902-10. DOI: 10.1002/smll.201002185

Yang F, Li M, Cui H, Wang T, Chen Z, Song L, et al. Altering the response of intracellular reactive oxygen to magnetic nanoparticles using ultrasound and microbubbles. Sci Chin Mater. 2015;58:467-80. DOI: 10.1007/s40843-015-0059-9

Cai X, Yang F, Gu N. Applications of magnetic microbubbles for theranostics. Theranostics. 2012;2:103-12. DOI: 10.7150/thno.3464

Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine. 2013;9:1-14. DOI: 10.1016/j.nano.2012.05.013

Shaffer SA, Baker-Lee C, Kennedy J, Lai MS, de Vries P, Buhler K, et al. In vitro and in vivo metabolism of paclitaxel poliglumex: identification of metabolites and active proteases. Cancer Chemother. Pharmacol. 2007;59:537-48. DOI: 10.1007/s00280-006-0296-4

Lindner LH, Hossann M, Vogeser M, Teichert N, Wachholz K, Eibl H, et al. Dual role of hexadecylphosphocholine (miltefosine) in thermosensitive liposomes: active ingredient and mediator of drug release. J Cont Release. 2008;125:112-20. DOI: 10.1016/j.jconrel.2007.10.009

Gil PR, Hühn D, Loretta L, Sasse D, Parak WJ. Nanopharmacy: Inorganic nanoscale devices as vectors and active compounds. Pharma Research. 2010;62:115-25. DOI: 10.1016/j.phrs.2010.01.009

Yi Li, Quang Nam Bui, Le Thai Minh Duy, Hong Yu Yang, and Doo Sung Lee. One-Step Preparation of pH-Responsive Polymeric Nanogels as Intelligent Drug Delivery Systems for Tumor Therapy. Biomacromolecules Article ASAP 2018. DOI: 10.1021/acs.biomac.8b00195. DOI: 10.1021/acs.biomac.8b00195

Zhang Y, Xu J. 2018 Mesoporous silica nanoparticle-based intelligent drug delivery system for bienzymeresponsive tumour targeting and controlled release. R. Soc. open sci. 2018;5:170986. http://dx.doi.org/10.1098/rsos.170986.

Zhao H , Li L, Zheng C, Hao Y, Niu M, Hu Y, Chang J, Zhang Z, wang L. An intelligent dual stimuli-responsive photosensitizer delivery system with O2-supplying for efficient photodynamic therapy. Coll Surfaces B: Biointerfaces. Volume 167, Pages 299-309. DOI: 10.1016/j.colsurfb.2018.04.011

Li H, Sang Q, Wu J, William GR, Wang H, Niu S, Wu J, Zhu LM. Dual-responsive drug delivery systems prepared by blend electrospinning. Int J Pharm. 2018 543(1-2):1-7. DOI: 10.1016/j.ijpharm.2018.03.009

Kumar B, Kulanthaivel S, Mondal A, Mishra S, Banerjee B, Bhaumik A, Banerjee I, Giri S. Mesoporous silica nanoparticle based enzyme responsive system for colon specific drug delivery through guar gum capping. Coll Surfaces B: Biointerfaces. 2017;150(1):352-361. DOI: 10.1016/j.colsurfb.2016.10.049

Yang F, Li M, Liu Y, Wang T, Feng Z, Cui H, et al. Glucose and magnetic-responsive approach toward in situ nitric oxide bubbles controlled generation for hyperglycemia theranostics. J Cont Release. 2016;228:87-95. DOI: 10.1016/j.jconrel.2016.03.002

Paris JL, Cabañas MV, Manzano M, Vallet-Regí M. Polymer-Grafted Mesoporous Silica Nanoparticles as Ultrasound-Responsive Drug Carriers. ACS Nano. 2015;9:11023-33. DOI: 10.1021/acsnano.5b04378

Alvarez-Lorenzo C, Concheiro A. Smart drug delivery systems: from fundamentals to the clinic. Chem Communications. 2014;50:7743-65. DOI: 10.1039/c4cc01429d

Chiang Y-T, Lo C-L. pH-responsive polymer-liposomes for intracellular drug delivery and tumor extracellular matrix switched-on targeted cancer therapy. Biomaterials. 2014;35:5414-24. . DOI: 10.1016/j.biomaterials.2014.03.046

Kelley EG, Albert JN, Sullivan MO, Epps III TH. Stimuli-responsive copolymer solution and surface assemblies for biomedical applications. Chem Soc Rev. 2013;42:7057-71. DOI: 10.1039/c3cs35512h

Cheng R, Meng F, Deng C, Klok H-A, Zhong Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials. 2013;34:3647-57. DOI: 10.1016/j.biomaterials.2013.01.084

Duan X, Xiao J, Yin Q, Zhang Z, Yu H, Mao S, et al. Smart pH-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram. ACS Nano. 2013;7:5858-69. DOI: 10.1021/nn4010796

Pan Y-J, Chen Y-Y, Wang D-R, Wei C, Guo J, Lu D-R, et al. Redox/pH dual stimuli-responsive biodegradable nanohydrogels with varying responses to dithiothreitol and glutathione for controlled drug release. Biomaterials. 2012;33:6570-9. DOI: 10.1016/j.biomaterials.2012.05.062

Mo R, Sun Q, Xue J, Li N, Li W, Zhang C, et al. Multistage pH-Responsive Liposomes for Mitochondrial-Targeted Anticancer Drug Delivery. Adv Mater. 2012;24:3659-65. DOI: 10.1002/adma.201201498

Leung SJ, Romanowski M. Light-activated content release from liposomes. Theranostics. 2012;2:1020-36. DOI: 10.7150/thno.4847

Yudina A, De Smet M, Lepetit-Coiffe M, Langereis S, Van Ruijssevelt L, Smirnov P, et al. Ultrasound-mediated intracellular drug delivery using microbubbles and temperature-sensitive liposomes. J Control Release. 2011;155:442-8. DOI: 10.1016/j.jconrel.2011.06.006

Delcea M, Möhwald H, Skirtach AG. Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv Drug Deliv Rev. 2011;63:730-47. DOI: 10.1016/j.addr.2011.03.010

Liu J, Zhang Y, Wang C, Xu R, Chen Z, Gu N. Magnetically sensitive alginate-templated polyelectrolyte multilayer microcapsules for controlled release of doxorubicin. J Phys Chem. 2010;114:7673-9. DOI: 10.1021/jp911933b

Patel K, Angelos S, Dichtel WR, Coskun A, Yang Y-W, Zink JI, et al. Enzyme-responsive snap-top covered silica nanocontainers. J Am Chem Soc. 2008;130:2382-3. DOI: 10.1021/ja0772086

Murdan S. Electro-responsive drug delivery from hydrogels. J Controlled Release. 2003;92:1-17. DOI: 10.1016/S0168-3659(03)00303-1


Texto completo: PDF (English)

Refbacks



Fecha de actualización: 11- 03-2018

ISSN: 2340-9894


Licencia de Creative Commons
Hasta el año 2017 los contenidos están publicados bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Licencia de Creative Commons
Desde el año 2018 los artículos publicados en esta revista se distribuyen con la licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.