Transporte autorregulador de fármacos: un sistema inteligente de administración de fármacos
Palabras clave:
Sistema inteligente de administración de fármacos, AutorreguladorResumen
Introducción: El objetivo principal de cualquier científico farmacéutico es desarrollar un sistema de administración de fármacos que sea seguro, efectivo, estable, que cumpla con los requisitos del paciente y cumpla con los requisitos de los clientes. Llevar a un gran interés de investigación para desarrollar el sistema de entrega de medicamentos que permitirá suministrar medicamentos «a demanda». Estos sistemas «sensibles a estímulos e inteligentes» han sido diseñados para administrar el farmaco en varios momentos o en varios sitios en el cuerpo, de acuerdo con un estímulo endógeno o aplicado externamente.
Objetivos: Este artículo tiene como objetivo revisar diversas investigaciones en el campo de los sistemas autorreguladores de administración de fármacos en forma tabular para que uno pueda utilizar estos hallazgos para un mayor desarrollo de sistemas inteligentes de administración de fármacos.
Método: Los investigadores han aplicado varios principios fisicoquímicos y esquemas químicos para obtener el patrón de liberación del fármaco según las necesidades del cuerpo. Dichos dispositivos se pueden usar para la administración inteligente de medicamentos necesarios para el tratamiento de muchas enfermedades, como la diabetes.
Resultados y discusión: Este tipo de sistema inteligente primero detecta las señales causadas por la enfermedad, juzga la magnitud de las señales y luego libera la droga en respuesta directa.
Conclusión: En este artículo, hemos discutido varias innovaciones en el campo de los sistemas autorreguladores de administración de fármacos y sugerimos que aquí hay mucho campo de investigación en este campo.
Descargas
Citas
Liu D , Yang F, Xiong F, Gu N. The Smart Drug Delivery System and Its Clinical Potential. Theranostics. 2016;6(9):1306-1323. DOI: 10.7150/thno.14858
Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C, et al. 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater. 2014;26:85-124. DOI: 10.1002/adma.201303233
Chang HI, Yeh MK. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine. 2012;7:49-60. DOI: 10.2147/ijn.s26766
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Coll Surfaces B Biointerfaces. 2010;75:1-18. DOI: 10.1016/j.colsurfb.2009.09.001
Rossi F, Ferrari R, Castiglione F, Mele A, Perale G, Moscatelli D. Polymer hydrogel functionalized with biodegradable nanoparticles as composite system for controlled drug delivery. Nanotechnology. 2014;26:015602. DOI: 10.1088/0957-4484/26/1/015602
Shimoni O, Postma A, Yan Y, Scott AM, Heath JK, Nice EC. Macromolecule functionalization of disulfide-bonded polymer hydrogel capsules and cancer cell targeting. ACS Nano. 2012;6:1463-72. DOI: 10.1021/nn204319b
Stumpel JE, Gil ER, Spoelstra AB, Bastiaansen CW, Broer DJ, Schenning AP. Stimuli-Responsive Materials Based on Interpenetrating Polymer Liquid Crystal Hydrogels. Adv Fun Mater. 2015;25:3314-20. DOI: 10.1002/adfm.201500745
Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, et al. pH-Sensitive nano-systems for drug delivery in cancer therapy. Bio Adv. 2014;32:693-710. DOI: 10.1016/j.biotechadv.2013.11.009
Ganesh VA, Baji A, Ramakrishna S. Smart functional polymers-a new route towards creating a sustainable environment.RSC Adv. 2014;4:53352-64. DOI: 10.1039/c4ra10631h
Gao W, Chan JM, Farokhzad OC. pH-responsive nanoparticles for drug delivery. Mol Pharm. 2010;7:1913-20. DOI: 10.1021/mp100253e
Yu P, Yu H, Guo C, Cui Z, Chen X, Yin Q, et al. Reversal of doxorubicin resistance in breast cancer by mitochondria-targeted pH-responsive micelles. Acta Biomater. 2015;14:115-24. DOI: 10.1016/j.actbio.2014.12.001
Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12:991-1003. DOI: 10.1038/nmat3776
Huo M, Yuan J, Tao L, Wei Y. Redox-responsive polymers for drug delivery: from molecular design to applications. Poly Chem. 2014;5:1519-28. DOI: 10.1039/c3py01192e
Wang J, Sun X, Mao W, Sun W, Tang J, Sui M, et al. Tumor Redox Heterogeneity-Responsive Prodrug Nanocapsules for Cancer Chemotherapy. Adv Mater. 2013;25:3670-6. DOI: 10.1002/adma.201300929
Nguyen MM, Carlini AS, Chien MP, Sonnenberg S, Luo C, Braden RL, et al. Enzyme-Responsive Nanoparticles for Targeted Accumulation and Prolonged Retention in Heart Tissue after Myocardial Infarction. Adv Mater. 2015;27:5547-52. DOI: 10.1002/adma.201502003
Callmann CE, Barback CV, Thompson MP, Hall DJ, Mattrey RF, Gianneschi NC. Therapeutic Enzyme-Responsive Nanoparticles for Targeted Delivery and Accumulation in Tumors. Adv Mater. 2015;27:4611-5. DOI: 10.1002/adma.201501803
De La Rica R, Aili D, Stevens MM. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv Drug Deliv Rev. 2012;64:967-78. DOI: 10.1016/j.addr.2012.01.002
Lock LL, Tang Z, Keith D, Reyes C, Cui H. Enzyme-Specific Doxorubicin Drug Beacon as Drug-Resistant Theranostic Molecular Probes. ACS Macro Lett. 2015;4:552-5. DOI: 10.1021/acsmacrolett.5b00170
Shi Y, van den Dungen ET, Klumperman B, van Nostrum CF, Hennink WE. Reversible Addition-Fragmentation Chain Transfer Synthesis of a Micelle-Forming, Structure Reversible Thermosensitive Diblock Copolymer Based on the N-(2-Hydroxy propyl) Methacrylamide Backbone. ACS Macro Lett. 2013;2:403-8. DOI: 10.1021/mz300662b
Shi Y, van Steenbergen MJ, Teunissen EA, Novo Ls, Gradmann S, Baldus M, et al. Π-Π stacking increases the stability and loading capacity of thermosensitive polymeric micelles for chemotherapeutic drugs. Biomacromolecules. 2013;14:1826-37. DOI: 10.1021/bm400234c
Shi Y, Cardoso RM, Van Nostrum CF, Hennink WE. Anthracene functionalized thermosensitive and UV-crosslinkable polymeric micelles. Polym Chem. 2015;6:2048-53. DOI: 10.1039/c4py01759e
Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148:135-46. DOI: 10.1016/j.jconrel.2010.08.027
Adelsberger J, Kulkarni A, Jain A, Wang W, Bivigou-Koumba AM, Busch P, et al. Thermoresponsive PS-b-PNIPAM-b-PS micelles: aggregation behavior, segmental dynamics, and thermal response. Macromolecules. 2010;43:2490-501. DOI: 10.1021/ma902714p
Zhao Y, Fan X, Liu D, Wang Z. PEGylated thermo-sensitive poly (amidoamine) dendritic drug delivery systems. Int J Pharm. 2011;409:229-36. DOI: 10.1016/j.ijpharm.2011.02.005
Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov.2014;13:813-27. DOI: 10.1038/nrd4333
Lal S, Clare SE, Halas NJ. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res. 2008;41:1842-51. DOI: 10.1021/ar800150g
Guo Q, Zhang T, An J, Wu Z, Zhao Y, Dai X, et al. Block versus Random Amphiphilic Glycopolymer Nanopaticles as Glucose-Responsive Vehicles. Biomacromolecules. 2015;16:3345-56. DOI: 10.1021/acs.biomac.5b01020
Wu Q, Wang L, Yu H, Wang J, Chen Z. Organization of glucose-responsive systems and their properties. Chem Rev.2011;111:7855-75. DOI: 10.1021/cr200027j
Gu Z, Aimetti AA, Wang Q, Dang TT, Zhang Y, Veiseh O, et al. Injectable nano-network for glucose-mediated insulin delivery.ACS Nano. 2013;7:4194-201. DOI: 10.1021/nn400630x
Yun J, Im JS, Lee Y-S, Kim H-I. Electro-responsive transdermal drug delivery behavior of PVA/PAA/MWCNT nanofibers. Eur Polym J. 2011;47:1893-902. DOI: 10.1016/j.eurpolymj.2011.07.024
Ying X, Wang Y, Liang J, Yue J, Xu C, Lu L, et al. Angiopep-Conjugated Electro-Responsive Hydrogel Nanoparticles: Therapeutic Potential for Epilepsy. Angewandte Chemie Int Ed. 2014;53:12436-40. DOI: 10.1002/anie.201403846
Curcio M, Spizzirri UG, Cirillo G, Vittorio O, Picci N, Nicoletta FP, et al. On demand delivery of ionic drugs from electro-responsive CNT hybrid films. RSC Advances. 2015;5:44902-11. DOI: 10.1039/c5ra05484b
Zhang L, Guo R, Yang M, Jiang X, Liu B. Thermo and pH Dual-Responsive Nanoparticles for Anti-Cancer Drug Delivery. Adv Mater. 2007;19:2988-92. DOI: 10.1002/adma.200601817
Zhang Z, Wang J, Chen C. Near-Infrared Light-Mediated Nanoplatforms for Cancer Thermo-Chemotherapy and Optical Imaging. Adv Mater. 2013;25:3869-80. DOI: 10.1002/adma.201301890
Jochum FD, Theato P. Thermo-and light responsive micellation of azobenzene containing block copolymers. Chem Communications. 2010;46:6717-9. DOI: 10.1039/c0cc01288b
Yang F, Hu S, Zhang Y, Cai X, Huang Y, Wang F, et al. A Hydrogen Peroxide-Responsive O2 Nanogenerator for Ultrasound and Magnetic-Resonance Dual Modality Imaging. Adv Mater. 2012;24:5205-11. DOI: 10.1002/adma.201202367
Yang F, Zhang M, He W, Chen P, Cai X, Yang L, et al. Controlled release of Fe3O4 nanoparticles in encapsulated microbubbles to tumor cells via sonoporation and associated cellular bioeffects. Small. 2011;7:902-10. DOI: 10.1002/smll.201002185
Yang F, Li M, Cui H, Wang T, Chen Z, Song L, et al. Altering the response of intracellular reactive oxygen to magnetic nanoparticles using ultrasound and microbubbles. Sci Chin Mater. 2015;58:467-80. DOI: 10.1007/s40843-015-0059-9
Cai X, Yang F, Gu N. Applications of magnetic microbubbles for theranostics. Theranostics. 2012;2:103-12. DOI: 10.7150/thno.3464
Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine. 2013;9:1-14. DOI: 10.1016/j.nano.2012.05.013
Shaffer SA, Baker-Lee C, Kennedy J, Lai MS, de Vries P, Buhler K, et al. In vitro and in vivo metabolism of paclitaxel poliglumex: identification of metabolites and active proteases. Cancer Chemother. Pharmacol. 2007;59:537-48. DOI: 10.1007/s00280-006-0296-4
Lindner LH, Hossann M, Vogeser M, Teichert N, Wachholz K, Eibl H, et al. Dual role of hexadecylphosphocholine (miltefosine) in thermosensitive liposomes: active ingredient and mediator of drug release. J Cont Release. 2008;125:112-20. DOI: 10.1016/j.jconrel.2007.10.009
Gil PR, Hühn D, Loretta L, Sasse D, Parak WJ. Nanopharmacy: Inorganic nanoscale devices as vectors and active compounds. Pharma Research. 2010;62:115-25. DOI: 10.1016/j.phrs.2010.01.009
Yi Li, Quang Nam Bui, Le Thai Minh Duy, Hong Yu Yang, and Doo Sung Lee. One-Step Preparation of pH-Responsive Polymeric Nanogels as Intelligent Drug Delivery Systems for Tumor Therapy. Biomacromolecules Article ASAP 2018. DOI: 10.1021/acs.biomac.8b00195. DOI: 10.1021/acs.biomac.8b00195
Zhang Y, Xu J. 2018 Mesoporous silica nanoparticle-based intelligent drug delivery system for bienzymeresponsive tumour targeting and controlled release. R. Soc. open sci. 2018;5:170986. http://dx.doi.org/10.1098/rsos.170986.
Zhao H , Li L, Zheng C, Hao Y, Niu M, Hu Y, Chang J, Zhang Z, wang L. An intelligent dual stimuli-responsive photosensitizer delivery system with O2-supplying for efficient photodynamic therapy. Coll Surfaces B: Biointerfaces. Volume 167, Pages 299-309. DOI: 10.1016/j.colsurfb.2018.04.011
Li H, Sang Q, Wu J, William GR, Wang H, Niu S, Wu J, Zhu LM. Dual-responsive drug delivery systems prepared by blend electrospinning. Int J Pharm. 2018 543(1-2):1-7. DOI: 10.1016/j.ijpharm.2018.03.009
Kumar B, Kulanthaivel S, Mondal A, Mishra S, Banerjee B, Bhaumik A, Banerjee I, Giri S. Mesoporous silica nanoparticle based enzyme responsive system for colon specific drug delivery through guar gum capping. Coll Surfaces B: Biointerfaces. 2017;150(1):352-361. DOI: 10.1016/j.colsurfb.2016.10.049
Yang F, Li M, Liu Y, Wang T, Feng Z, Cui H, et al. Glucose and magnetic-responsive approach toward in situ nitric oxide bubbles controlled generation for hyperglycemia theranostics. J Cont Release. 2016;228:87-95. DOI: 10.1016/j.jconrel.2016.03.002
Paris JL, Cabañas MV, Manzano M, Vallet-Regí M. Polymer-Grafted Mesoporous Silica Nanoparticles as Ultrasound-Responsive Drug Carriers. ACS Nano. 2015;9:11023-33. DOI: 10.1021/acsnano.5b04378
Alvarez-Lorenzo C, Concheiro A. Smart drug delivery systems: from fundamentals to the clinic. Chem Communications. 2014;50:7743-65. DOI: 10.1039/c4cc01429d
Chiang Y-T, Lo C-L. pH-responsive polymer-liposomes for intracellular drug delivery and tumor extracellular matrix switched-on targeted cancer therapy. Biomaterials. 2014;35:5414-24. . DOI: 10.1016/j.biomaterials.2014.03.046
Kelley EG, Albert JN, Sullivan MO, Epps III TH. Stimuli-responsive copolymer solution and surface assemblies for biomedical applications. Chem Soc Rev. 2013;42:7057-71. DOI: 10.1039/c3cs35512h
Cheng R, Meng F, Deng C, Klok H-A, Zhong Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials. 2013;34:3647-57. DOI: 10.1016/j.biomaterials.2013.01.084
Duan X, Xiao J, Yin Q, Zhang Z, Yu H, Mao S, et al. Smart pH-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram. ACS Nano. 2013;7:5858-69. DOI: 10.1021/nn4010796
Pan Y-J, Chen Y-Y, Wang D-R, Wei C, Guo J, Lu D-R, et al. Redox/pH dual stimuli-responsive biodegradable nanohydrogels with varying responses to dithiothreitol and glutathione for controlled drug release. Biomaterials. 2012;33:6570-9. DOI: 10.1016/j.biomaterials.2012.05.062
Mo R, Sun Q, Xue J, Li N, Li W, Zhang C, et al. Multistage pH-Responsive Liposomes for Mitochondrial-Targeted Anticancer Drug Delivery. Adv Mater. 2012;24:3659-65. DOI: 10.1002/adma.201201498
Leung SJ, Romanowski M. Light-activated content release from liposomes. Theranostics. 2012;2:1020-36. DOI: 10.7150/thno.4847
Yudina A, De Smet M, Lepetit-Coiffe M, Langereis S, Van Ruijssevelt L, Smirnov P, et al. Ultrasound-mediated intracellular drug delivery using microbubbles and temperature-sensitive liposomes. J Control Release. 2011;155:442-8. DOI: 10.1016/j.jconrel.2011.06.006
Delcea M, Möhwald H, Skirtach AG. Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv Drug Deliv Rev. 2011;63:730-47. DOI: 10.1016/j.addr.2011.03.010
Liu J, Zhang Y, Wang C, Xu R, Chen Z, Gu N. Magnetically sensitive alginate-templated polyelectrolyte multilayer microcapsules for controlled release of doxorubicin. J Phys Chem. 2010;114:7673-9. DOI: 10.1021/jp911933b
Patel K, Angelos S, Dichtel WR, Coskun A, Yang Y-W, Zink JI, et al. Enzyme-responsive snap-top covered silica nanocontainers. J Am Chem Soc. 2008;130:2382-3. DOI: 10.1021/ja0772086
Murdan S. Electro-responsive drug delivery from hydrogels. J Controlled Release. 2003;92:1-17. DOI: 10.1016/S0168-3659(03)00303-1
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Ashish Jain, Pradeep Kumar Mohanty
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos que se publican en esta revista están sujetos a los siguientes términos en relación a los derechos patrimoniales o de explotación:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, la cual se distribuirá con una licencia Creative Commons BY-NC-SA 4.0 que permite a terceros reutilizar la obra siempre que se indique su autor, se cite la fuente original y no se haga un uso comercial de la misma.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la fuente original de su publicación.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en repositorios institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).