Componentes biológicamente activos de la leche materna

Autores/as

  • L BARÓ Puleva Biotech S.A. Camino de Purchil 66, 18004 Granada.
  • J JIMÉNEZ Puleva Biotech S.A. Camino de Purchil 66, 18004 Granada.
  • A MARTÍNEZ-FÉREZ Dpto. Ingeniería Química, Universidad de Granada.
  • JJ BOZA Puleva Biotech S.A. Camino de Purchil 66, 18004 Granada.

Palabras clave:

Leche humana, Lactoferrina, Nucleotidos, Poliaminas

Resumen

La leche materna es un complejo fluido biológico que aporta la energía y los nutrientes esenciales para el desarrolloy crecimiento del recién nacido. Pero además, la leche materna contiene toda una serie de compuestos bioactivoscomo enzimas, hormonas, factores de crecimiento, proteínas específicas, poliaminas, nucleótidos, oligosacáridos, etc.,que ejercen efectos biológicos y que en conjunto reciben el nombre de “factores tróficos de la leche”. Estos compuestosbiactivos son considerados nutrientes potencialmente esenciales en periodos de desarrollo y en determinadasenfermedades, cuando la capacidad de síntesis no supera las necesidades de los mismos. Aunque las fórmulasinfantiles aportan todos los nutrientes para un adecuado desarrollo del recién nacido, carecen de muchos de estoscompuestos. Este artículo pretende realizar una revisión acerca de los conocimientos actuales sobre los efectosbiológicos de la lactoferrina, nucleótidos, poliaminas y oligosacáridos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Andersson Y., Lind S., Lagerqvist C., Hernell O. (2000). Lactoferrin is responsible for the fungistatic effect of human milk. Early Hum Dev; 50:95-105.

Bohles H., Gebhardt C., Beeg T. (1998). Reflections about possible nutritional supplements in infant milk formula. Z Ernahrungswiss; 37:132-146.

Boza J.J., Jiménez J., Faus M.J., Gil A. (1992). Influences of postnatal age and dietary nucleotides on plasma fatty acid in the weanling rat. JPEN; 16:322-326.

Brines R.D., Brock J.H. (1983). The effect of trypsin and chymotrypsin on the in vitro antimicrobial and iron-binding properties of lactoferrin in human milk and bovine colostrum. Unusual resistance of human apolactoferrin to proteolitic digestion. Biochim Biophys Acta; 759:229-235.

Buts J.P., De Keyser N., Kolanowski J., Sokal E., Nsegiyumba T. (1993). Maturation of villus and crypt cell functions in rat small intestine: role of dietary poliamines. Dig Dis Sci; 38:1091-1098.

Buts J.P., De Keyser N., De Raedemaeker L., Collette E., Sokal E.M. (1995). Polyamine profiles in human milk, infant artificial formulas, and semi-elemental diets. J Pedriatr Gastroenterol Nutr; 21(1): 44-49.

Capano G., Bloch K.J., Carter E.A., Dascoli J.A., Schoenfeld D., Harmatz P.R. (1998). Polyamines in human and rat milk influence intestinal cell growth in vitro. J Pedriatr Gastroenterol Nutr; 27:281-286.

Carver J.D., Pimentel B., Cox W.I., Barness L.A. (1991). Dietary nucleotide effects upon immune function in infants. Pediatrics; 88: 359-363.

Carver J.D. (1996). Nucleótidos. Anales Nestlé; 54: 99-109.

Dandrifosse G., Peulen O., El Khefif N., Deloyer P., Dandrifosse A.C., Grandfils C. (2000). Are milk poliamines preventive agents against food allergy?. Proc Nutr Soc; 59(1):81-86

Davidson L.A., Lonnerdal B. (1987). Persistance on human milk proteins in the breast fed infant. Acta Pediatr Scand; 76:733-740.

Engfer M.B., Stahl B., Finke B., Sawatzki G., Daniel H. (2000). Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. Am J Clin Nutr; 71:1589-1596.

Fransson G.B., Lonnerdal B. (1980). Iron in human milk. J Pedriatr; 96:380-384.

George, D.E., DeFrancesca, B.A. (1989). Human milk in comparation to cow milk. En: Lebenthal, E. (ed). Textbook of gastroenterology and nutrition in infancy, 2th edn. Raven Press, New York, pp. 239-260.

Gil, A., Uauy, R. (1995). Nucleotides and related compounds in human and bovine milks. En: Jensen, R.G. (ed). Handbook in milk composition, Academic Press, New York, pp. 436-464.

Goldman A.S. (2000). Modulation of the gastrointestinal tract of infants by human milk. Interfaces and interactions. An evolutionary perspective. J Nutrition; 130:426S-431S

Hutchens T.W., Henry J.F., Yip T.T. (1991). Origin of intact lactoferrin and its ADN-binding fragments found in the urine of human –milk preterm infants. Evaluation by stable isotopic enrichment. Pediatr Res; 29:243-50.

Jiménez J., Boza J.J., Suárez M.D., Gil A. (1992). Changes in fatty acid profiles of red blood cell membranes mediated by dietary nucleotides in weanling rats. J Pediatr Gastroenterol Nutr; 14:293-9.

Kalliomaki M., Ouwehand A., Arvilommi H., Kero P., Isolauri E. (1999). Transforming growth factor-beta in breast milk: a potential regulator of atopic disease at an early age. J Allergy Clin Immunol; 104(6): 1251-1257.

Koldovsky, O., Strbak, V. (1995). Hormones and growth factors in human milk. En: Jensen, R.G. (ed). Handbook in milk composition, Academic press, New York, pp. 436-464.

Kunz C., Rudloff S. (1993). Biological functions of oligosaccharides in human milk. Acta Paedriatr; 88:903-912.

Kunz C., Rudloff S., Baier W., Klein N., Strobel S. (2000). Oliogasacaridos in human milk: structural, functional, and metabolic aspects. Annu Rev Nutr; 20:699-722.

Kuwata H., Yip T.T., Tomita M., Hutchens T.W. (1998). Direct evidence of the generation in human stomach of an antimicrobial peptide domain (lactoferricin) from ingested lactoferrin. Biochim Biophys Acta; 1429(1): 129-141.

Lonnerdal B., Forsum E., Hambreus L. (1976). A longitudinal study of the protein, nitrogen and lactose contents of human milk from Swedish well-nourished mothers. Am J Clin Nutr; 29: 1127-33.

Lonnerdal B. (1997). Lactoferrina. Anales Nestlé; 54(3): 89-98.

Loser C., Eisel A., Harms D., Folsch U.R. (1999). Dietary polyamines are essential luminal growth factors for small intestinal and colonic mucosal growth and development. Gut; 44:12-16.

Marcheti E. (1998). Metal complexes of bovine lactoferrin inhibit in vitro replication of Herpes simplex virus type 1 and 2. Biometals; 11:89-94.

Martínez-Valverde, A., Ramirez, M., Sánchez-Pozo, A., Gil, A. (1996). Effect of dietary nucleotides on the polyunsaturated fatty acid metabolism in low birth weight neonates. En Gil, A., Uauy, R. (eds). Nutritional and biological significance of dietary nucleotides and nucleic acids. Abbott Laboratories, Granada, pp:121-132.

McVeagh P., Miller J.B. (1997). Human milk oligosaccharides: only the breast. J Paediatr Child Health; 33:281-286.

Naidu, A.S., Arnold, R.R. (1997). Influence of lactoferrin on host-microbe interactions. En: Hutchens, T.W., Lonnerdal B. (eds). Lactoferrin: interaction and biological functions, Humana Press, pp. 259-275.

Newburg, S.N., Neubauer, S.H. (1995). Carboydrates in milk: analysis, quantities, and significance. En: Jensen, R.G. (ed). Handbook in milk composition, Academic press, New York, pp. 273-350.

Newburg S.N. (1999). Human milk glycoconjugates that inhibit pathogens. Curr Med Chem ; 6:117-127.

Nichols B.L., McKee K.S., Henry J.F., Putman M. (1987). Human lactoferrin stimulates thymidine incorporation into ADN of rat crypt cells. Pedriatr Res; 21:563-567.

Okuyama H., Urao M., Lee D., Drongowski R.A., Coran A.G., (1998). The effect of epidermal growth factor on bacterial translocation in newborn rabbitts. J Pediatr Surg; 33:225-228.

Playford R.J., Macdonald C.E., johnson S. (2000). Colostrum and milk-derived peptide growth for the treatment of gastrointestinal disorders. Am J Clin Nutr;72:5-14.

Saarinen U.M., Siimes M.A., Dallman P.R. (1977). Iron absorption in infant: high bioavailability of breast-milk iron as indicated by the extrinsic tag method of iron absorption and by the concentration of serum ferritin. J Pedriatr; 91:36-39.

Sánchez-Díaz A., Ruano M.J., Lorente F., Hueso P. (1997). A critical analysis of total sialic acid and sialoglycoconjugate contents of bovine milk-based infant formulas. J Pedriatr Gastroenterol Nutr; 24:405-410.

Tanaka M., Lee K., Martinez-Augustin O., He Y., Sanderson I.A., Walker W. (1996). Exogenous nucleotides alter the proliferation, differentiation and apoptosis of human small intestinal epithelium. J Nutrition; 126: 424-433.

Ter Steege C.A., Buurman W.A., Forget P.P. (1997). Spermine induces maturation of the immature intestinal immune system in neonatal mice. J Pediatr Gastroenterol Nutr; 25(3):332-340

Tsujinaka T., Iijima S., Kido Y. (1993). Role of nucleosides and nucleotide mixture in intestinal mucosal growth under total parenteral nutrition. Nutrition; 9:532-535.

Uauy, R. Dietary nucleotides and requirements in early life. (1989).En: Lebenthal ed. Textbook of gastroenterology and nutrition, Raven Press, New York, pp. 265-280.

Uauy R., Stringel G., Thomas R., Quan R. (1990). Effect of dietary nucleosides on growth and maturation of the deloping gut in the rat. J Pediatr Gastroenterol Nutr; 10:497-503.

Descargas

Publicado

2000-12-20

Cómo citar

1.
BARÓ L, JIMÉNEZ J, MARTÍNEZ-FÉREZ A, BOZA J. Componentes biológicamente activos de la leche materna. Ars Pharm [Internet]. 20 de diciembre de 2000 [citado 27 de diciembre de 2024];42(1-2):21-38. Disponible en: https://revistaseug.ugr.es/index.php/ars/article/view/5705

Número

Sección

Artículos de revisión