Diabetes tipo 2: gluco-lipo-toxicidad y disfunción de la célula β pancreática

Autores/as

  • E ROCHE División de Nutrición, Departamento de Biología Aplicada. Universidad Miguel Hernández 03550-Sant Joan (Alicante).

Palabras clave:

Célula β, Diabetes, Glucotoxicidad, Lipotoxicidad

Resumen

La célula β pancreática secreta insulina en función de la concentración extracelular de glucosa y de otros nutrientescirculantes, como son los ácidos grasos. Esta podría definirse como una adaptación fisiológica normal de la secreciónde la hormona en función de la demanda. Sin embargo este patrón secretor se pierde en condiciones de hiperglucemiae hiperlipidemia crónicas típicas de la patología diabética. La evidencia experimental correlaciona la presencia enexceso de dichos nutrientes con el desarrollo de la enfermedad. Este fenómeno, denominado glucotoxicidad para laglucosa o lipotoxicidad para los ácidos grasos, contempla la propiedad por parte de dichos nutrientes de controlardiversos programas génicos que desembocarían en profundas alteraciones fenotípicas en la célula β. En primerainstancia, la célula β tiene mecanismos de adaptación y detoxificación para esta situación desfavorable y manteneruna correcta respuesta secretora. Sin embargo, cuando la situación de hiperglucemia e hiperlipidemia crónica se dasobre todo de forma conjunta, se activan programas de suicidio celular que culminan en la desaparición de estascélulas productoras de insulina y la aparición de la diabetes.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Zimmet P, Alberti KGMM, Shaw J. Global and societal implications of the diabetic epidemic. Nature 2001; 414: 782-787.

Bell GI, Polonsky KS. Diabetes mellitus and genetically programmed defects in β-cell function. Nature 2001; 414: 788-791.

Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001; 414: 799-806.

Kahn CR. Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes 1994; 43: 1066-1084.

Poitout V, Robertson RP. An integrated view of β-cell dysfunction in type 2 diabetes. Annu Rev Med 1996; 47: 69-83.

Porte D. β-Cells in type II diabetes mellitus. Diabetes 1991; 40: 166-180.

Assimacopoulos-Jeannet F, Jeanrenaud B. The hormonal and metabolic basis of experimental obesity. Clin Endocrinol Metab 1976; 5: 337-365.

Polonsky KS, Sturis J, Bell GI. Non-insulin dependent diabetes mellitus. A genetically programmed failure of the β-cell to compensate for insulin resistance. N Engl J Med 1996; 334: 777-783.

Bruning JC, Michael MD, Winnay JN, Hayashi T, Horsch D, Accili D et al. A muscle-specific insulin receptor knockout exhibits feautures of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell 1998; 2: 559-569.

Prentki M, Roduit R, Lameloise N, Corkey BE, Assimacopoulos-Jeannet F. Glucotoxicity, lipotoxicity and pancreatic β-cell failure: A role for malonyl-CoA, PPARα and altered lipid partitioning? Canadian J Diabetes Care 2000; 25: 36-46.

Prentki M, Joly E, El-Assaad W, Roduit R. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity. Role in β-cell adaptation and failure in the etiology of diabtes. Diabetes 2002; 51 (Suppl 3): S405-S413.

Roche E, Assimacopoulos-Jeannet F, Witters LA, Perruchoud B, Yaney G, Corkey B et al. Induction by glucose of genes coding for glycolytic enzymes in a pancreatic β-cell line (INS-1). J Biol Chem 1997; 272: 3091-3098.

Roche E, Farfari S, Witters LA, Assimacopoulos-Jeannet F, Thumelin S, Brun T et al. Long-term exposure of β-INS cells to high glucose increases anaplerosis, lipogenesis and lipogenic gene expression. Diabetes 1998; 47: 1086-1094.

Roduit R, Morin J, Massé F, Segall L, Roche E, Newgard CB et al. Glucose down-regulates the expresion of the peroxisome proliferator-activated receptor-α gene in the pancreatic β-cell. J Biol Chem 2000; 275: 35799-35806.

Susini S, Roche E, Prentki M, Schlegel W. Glucose and glucoincretin peptides synergize to induce c-fos, c-jun, junB, zif-268, and nur-77 gene expression in pancreatic β(INS-1) cells. FASEB J 1998; 12: 1173-1182.

Brun T, Roche E, Kim KH, Prentki M. Glucose regulates acetyl-CoA carboxylase gene expression in a pancreatic β-cell line (INS-1). J Biol Chem 1993; 268: 18905-18911.

Laybutt DR, Weir GC, Kaneto H, Lebet J, Palmiter RD, Sharma A et al. Overexpression of c-Myc in β-cells of transgenic mice causes proliferation and apoptosis, downregulation of insulin gene expression, and diabetes. Diabetes 2002; 51: 1793-1804.

Efanova IB, Zaitsev SV, Zhivotovsky B, Köhler M, Efendiæ S, Orrenius S et al. Glucose and tolbutamide induce apoptosis in pancreatic β-cells. A process dependent on intracellular Ca2+ concentration. J Biol Chem 1998; 273: 33501-33507.

Unger RH. Lipotoxicity in the pathogenesis of obesity.dependent NIDDM. Genetic and clinical implications. Diabetes 1995; 44: 863-870.

Gremlich S, Bonny C, Waeber G, Thorens B. Fatty acids decrease IDX-1 expression in rat pancreatic islets and reduce GLUT2, glucokinase, insulin, and somatostatin levels. J Biol Chem 1997; 272: 30261-30269.

Roche E, Buteau J, Aniento I, Reig JA, Soria B, Prentki M. Palmitate and oleate induce the immediate-early response genes c-fos and nur-77 in the pancreatic β-cell line INS-1. Diabetes 1999; 48: 2007-2014.

Brun T, Assimacopoulos-Jeannet F, Corkey BE, Prentki M. Long chain fatty acids inhibit acetyl-CoA carboxylase gene expression in the pancreatic β-cell line INS-1. Diabetes 1997; 46: 393-400.

Maestre I, Jordán J, Calvo S, Reig JA, Ceña V, Soria B et al. Mitochondrial dysfunction is involved in apoptosis induced by serum withdrawal and fatty acids in the β-cell line INS-1. Endocrinology 2003; 144: 335-345.

Gerich JE. The genetic basis of type 2 diabetes mellitus: impaired insulin secretion versus impaired insulin sensitivity. Endocrinol Rev 1998; 19: 491-503.

Roche E, Maestre I, Martín F, Fuentes E, Casero J, Reig JA et al. Nutrient toxicity in pancreatic β-cell dysfunction. J Physiol Biochem 2000; 56: 119-128.

Prentki M, Tornheim K, Corkey BE. Signal transduction mechanisms in nutrient-induced insulin secretion. Diabetologia 1997; 40: S32-S41.

De Vos A, Heimberg H, Quartier E, Huypens P, Bouwens L, Pipeleers D et al. Human and rat beta cells differ in glucose

transporter but not in glucokinase gene expression. J Clin Invest 1995; 96: 2489-2495.

Matschinsky FM. Regulation of pancreatic β-cell glucokinase. From basics to therapeutics, Diabetes 2002; 51 (Suppl 3): S394-S404.

Maechler P, Wollheim CB. Mitochondrial function in normal and diabetic β-cells. Nature 2001; 414: 807-812.

Rorsman P. The pancreatic β-cell as a fuel sensor: an electrophysiologist’s viewpoint. Diabetologia 1997; 40: 487-495.

Takahashi N, Kishimoto T, Nemoto T, Kadowaki T, Kasai H. Fusion pore dynamics and insulin granule exocytosis in the pancreatic islet. Science 2002; 297: 1349-1352.

Yang S-N, Larsson O, Bränström R, Bertorello AM, Leibiger B, Leibiger IB et al. Syntaxin 1 interacts with the LD subtype of voltage-gated Ca2+ channels in pancreatic β cells. Proc Natl Acad Sci USA 1999; 96: 10164-10169.

Gerber SH, Südhof T. Molecular determinants of regulated exocytosis. Diabetes 2002; 51 (Suppl 1): S3-S11.

Brun T, Roche E, Assimacopoulos-Jeannet F, Corkey BE, Kim KH, Prentki M. Evidence for an anaplerotic malonyl-CoA pathway in pancreatic β-cell nutrient signaling. Diabetes 1996; 45: 190-198.

Farfari S, Schulz V, Corkey B, Prentki M. Glucose-regulated anaplerosis and cataplerosis in pancreatic β-cells. Possible implication of a pyruvate/citrate shuttle in insulin secretion. Diabetes 2000; 49: 718-726.

Maechler P, Wollheim CB. Glutamate acts as a mitochondrially derived messenger in glucose-induced insulin exocytosis. Nature 1999; 402: 685-689.

MacDonald MJ, Fahien LA. Glutamate is not a messenger in insulin secretion. J Biol Chem 2000; 275: 34025-34027.

Laybutt DR, Sharma A, Sgroi DC, Gaudet J, Bonner-Weir S, Weir GC. Genetic regulation of metabolic pathways in β-cells disrupted by hyperglycemia. J Biol Chem 2002; 277: 10912-10921.

Jonas JC, Sharma A, Hasenkamp W, Ilkova H, Patane G, Laybutt R et al. Chronic hyperglycemia triggers loss of pancreatic β-cell differentiation in an animal model of diabetes. J Biol Chem 1999; 274: 14112-14121.

Alcazar O, Qiu-yue Z, Gine E, Tamarit-Rodríguez J. Stimulation of islet protein kinase C translocation by palmitate requires metabolism of the fatty acid. Diabetes 1997; 46: 1153-1158.

Yaney GC, Korchak HM, Corkey BE. Long-chain acyl-CoA regulation of protein kinase C and fatty acid potentiation of glucose-stimulated insulin secretion in clonal β-cells. Endocrinology 2000; 141: 1989-1998.

Warnotte C, Gilon P, Nenquin M, Henquin JC. Mechanisms of the stimulation of insulin release by saturated fatty acids. A study of palmitate effects in mouse β-cells. Diabetes 1994; 43: 703-711.

Yajima H, Komatsu M, Yamada S, Straub SG, Kanako T, Sato Y et al. Cerulenin, an inhibitor of protein acylation, selectively attenuates nutrient stimulation of insulin release: a study in rat pancreatic islets. Diabetes 2000; 49: 712-717.

Segall L, Lameloise N, Assimacopoulos-Jeannet F, Roche E, Corkey P, Thumelin S et al. Lipid rather than glucose metabolism is implicated in altered insulin secretion caused by oleate in INS-1 cells. Am J Physiol 1999; 277: E521-E528.

Assimacopoulos-Jeannet F, Thumelin S, Roche E, Esser V, McGarry JD, Prentki M. Fatty acids rapidly induce the carnitine palmitoyltransferase I gene in the pancreatic β-cell line INS-1. J Biol Chem 1997; 272: 1659-1664.

Zhou YT, Shimabukuro M, Wang M-Y, Lee Y, Higa M, Milburn JL et al. Role of peroxisome proliferator-activated receptor α in disease of pancreatic β-cells. Proc Natl Acad Sci USA 1998; 95: 8898-8903.

Lameloise N, Muzzin P, Prentki M, Assimacopoulos-Jeannet F. Uncoupling protein-2: a possible link between fatty acid excess and impaired glucose-induced insulin secretion? Diabetes 2001; 50: 803-809.

Liu YQ, Tornheim K, Leahy JL. Fatty acid-induced β-cell hypersensitivity to glucose. Increased phosphofructokinase activity and lowered glucose-6-phospahte content. J Clin Invest 1998; 101: 1870-1875.

Branstrom R, Leibiger IB, Leibiger B, Corkey BE, Berggren P-O, Larsson O. Long chain coenzyme A esters activate the pore forming subunit (Kir6.2) of the ATP-regulated potassium channel. J Biol Chem 1998; 273: 31395-31400.

Branstrom R, Corkey BE, Berggren P-O, Larsson O. Evidence for an unique long chain acyl-CoA ester binding site on the ATP-regulated potassium channel in mouse pancreatic β-cells. J Biol Chem 1997; 272: 17390-17394.

Mutomba MC, Yuan H, Konyavko M, Adachi S, Yokoyama CB, Esser V et al. Regulation of the activity of caspases by L-carnitine and palmitoylcarnitine. FEBS Lett 2000; 478: 19-25.

Eto K, Yamashita T, Matsui J, Terauchi Y, Noda M, Kadowaki T. Genetic manipulations of fatty acid metabolism in β-cells are associated with dysregulated insulin secretion. Diabetes 2002; 51 (Suppl 3): S414-S420.

Patanè G, Anello M, Piro S, Vigneri R, Purrello F, Rabuazzo AM. Role of ATP production and uncoupling protein-2 in the insulin secretory defect induced by chronic exposure to high glucose or free fatty acids and effects of peroxisome proliferator-activated receptor-γ inhibition. Diabetes 2002; 51: 2749-2756.

Descargas

Publicado

2003-09-20

Cómo citar

1.
ROCHE E. Diabetes tipo 2: gluco-lipo-toxicidad y disfunción de la célula β pancreática. Ars Pharm [Internet]. 20 de septiembre de 2003 [citado 4 de mayo de 2024];44(4):313-32. Disponible en: https://revistaseug.ugr.es/index.php/ars/article/view/5671

Número

Sección

Artículos de revisión