Una síntesis ecológica de catecol en H2O2 mediante el uso de catalizadores preparados naturalmente: WEWSA y WECMA

Autores/as

  • Khemchand Surana Department of Pharmaceutical Chemistry, Shreeshakti Shaikshanik Sanstha, Divine College of Pharmacy, Satana, Nashik, Affiliated to SavitribaiPhule Pune University, Pune, Maharashtra 423301, India
  • Sagar Bhawar Department of Pharmaceutical Chemistry, SSS’s Divine College of Pharmacy, Satana, Nashik, Maharashtra
  • Sunil Mahajan Department of Pharmaceutical Chemistry, SSS’s Divine College of Pharmacy, Satana, Nashik, Maharashtra
  • Deepak Sonawane Department of Pharmaceutics, SSS’s Divine College of Pharmacy, Nashik, Maharashtra, India – 423301 Affiliated to Savitribai Phule Pune University, Pune

DOI:

https://doi.org/10.30827/ars.v66i4.34536

Palabras clave:

Oxidación de Dakin, peróxido de hidrógeno, química verde, WEWSA, WECMA, catecol

Resumen

Introducción: La química verde proporciona un marco para desarrollar procesos y productos químicos innovadores. Estas directrices abarcan todos los aspectos del ciclo de vida de un proceso, incluyendo las materias primas utilizadas, la eficacia y seguridad de la transformación, y la toxicidad y biodegradabilidad de los productos y reactivos empleados.

Métodos: El uso de la reacción de Dakin de una manera menos dañina para el medio ambiente fue la inspiración para nuestro novedoso enfoque para la producción de catecol. Los arilaldehídos aromáticos pueden transformarse en fenoles a temperatura ambiente con la ayuda de H₂O₂-WEWSA y WECMA.

Resultados: El sistema catalítico debería funcionar idealmente sin necesidad de activación o presencia de catalizadores de metales de transición, ligandos tóxicos, aditivos/promotores, bases, disolventes orgánicos o sustancias similares.

Conclusión: Para evaluar la eficacia de este método, se examinaron varios benzaldehídos hidroxilados sustituidos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Bora P, Bora B, Bora U. Recent developments in synthesis of catechols by Dakin oxidation. New J Chem. 2021; 45: 17077–17084. Doi: 10.1039/D1NJ03300J

Su J, Noro J, Fu J, Wang Q, Silva C, Cavaco-Paulo A. Enzymatic polymerization of catechol under high-pressure homogenization for the green coloration of textiles. J Clean Prod. 2018; 202: 792–798. Doi: 10.1016/j.jclepro.2018.08.205

Park J, Kelly MA, Kang JX, Seemakurti SS, Ramirez JL, Hatzell MC, et al. Production of active pharmaceutical ingredients (APIs) from lignin-derived phenol and catechol. Green Chem. 2021; 23: 7488–7498. Doi: 10.1039/D1GC02158C

Fei H, Shin J, Meng YS, Adelhardt M, Sutter J, Meyer K, Cohen SM. Reusable oxidation catalysis using metal-monocatecholato species in a robust metal–organic framework. J Am Chem Soc. 2014; 136: 4965–4973. Doi: 10.1021/ja411627z

AbdulKareem-Alsultan G, Taufiq-Yap YH, Asikin-Mijan N, Seenivasagam S, Lee HV. Hydrodeoxygenation of guaiacol, methylguaiacol, and catechol. Adv Hydrotreating Integr Biofuel Prod. 2024; 193–213. Doi: 10.1016/B978-0-443-19076-6.00014-5

Xu R, Liu W, Deng Y, Gao R, Huang N, Zheng Y, et al. Simultaneously regulating charge separation and proton supply-demand in polyphenol amine for hydrogen peroxide photosynthesis. Chem Eng J. 2024; 486: 150137. Doi: 10.1016/j.cej.2024.150137

Gogoi G, Nath JK, Hoque N, Biswas S, Gour NK, Kalita DJ, et al. Single and multiple site Cu(II) catalysts for benzyl alcohol and catechol oxidation reactions. Appl Catal A Gen. 2022; 644: 118816. Doi: 10.1016/j.apcata.2022.118816

Coupé F, Petitjean L, Anastas PT, Caijo F, Escande V, Darcel C. Sustainable oxidative cleavage of catechols for the synthesis of muconic acid and muconolactones including lignin upgrading. Green Chem. 2020; 22: 6204–6211. Doi: 10.1039/D0GC02157A

Zheng LT, Ryu GM, Kwon BM, Lee WH, Suk K. Anti-inflammatory effects of catechols in lipopolysaccharide-stimulated microglia cells: inhibition of microglial neurotoxicity. Eur J Pharmacol. 2008; 588: 106-13. Doi: 10.1016/j.ejphar.2008.04.035

Bressi V, Ferlazzo A, Iannazzo D, Espro C. Graphene quantum dots by eco-friendly green synthesis for electrochemical sensing: Recent advances and future perspectives. Nanomater. 2021; 11: 1120. Doi: 10.3390/nano11051120

Lee DY, Park M, Kim N, Gu M, Kim HI, Kim BS. Sustainable hydrogen peroxide production based on dopamine through Janus-like mechanism transition from chemical to photocatalytic reactions. J Catal. 2022; 411:235–244. Doi: 10.1016/j.jcat.2022.05.017

Yadav S, Jain A, Malhotra P. A review on the sustainable routes for the synthesis and applications of cuprous oxide nanoparticles and their nanocomposites. Green Chem. 2019; 21: 937–955. Doi: 10.1039/C8GC03303J

Dutta S, Yadav M, Sharma RK. Implementation of Green Chemistry: Real-World Case Studies. Green Chem Beginners. 2021; 205–261. Doi: 10.1201/9781003180425

Su J, Fu J, Wang Q, Silva C, Cavaco-Paulo A. Laccase: a green catalyst for the biosynthesis of poly-phenols. Crit Rev Biotechnol. 2018; 38: 294–307. Doi: 10.1080/07388551.2017.1354353

Surana KR, Bhavar SV, Sonawane VN, Patil DM, Sonawane DD, Mahajan SK. Tap Water and RO Outlet Water a Novel Greener Route to Catechol Synthesis in H2O2. Asian J Green Chem. 2023; 7: 189–198. Doi: 10.22034/ajgc.2023.390693.1389

Tang Z, Zhang M, Xiao H, Liu K, Li X, Du B, et al. A green catechol-containing cellulose nanofibrils-cross-linked adhesive. ACS Biomater Sci Eng. 2022; 8: 1096–1102. Doi: 10.1021/acsbiomaterials.1c01494

Saikia B, Borah P. A new avenue to the Dakin reaction in H2O2–WERSA. RSC Adv. 2015; 5: 105583–105586. Doi: 10.1039/C5RA20133K

Puertas-Bartolomé M, Benito-Garzón L, Fung S, Kohn J, Vázquez-Lasa B, San Román J. Bioadhesive functional hydrogels: Controlled release of catechol species with antioxidant and antiinflammatory behavior. Mater Sci Eng C. 2019; 105: 110040. Doi: 10.1016/j.msec.2019.110040

Al-Hammashi F, Momenbeik F. Polycatechol coated cigarette filter as a sorbent for microextraction by packed sorbent of acidic non-steroidal anti-inflammatory drugs (NSAIDs) from wastewater samples. Microchem J. 2025; 208: 112298. Doi: 10.1016/j.microc.2024.112298

Descargas

Publicado

19-09-2025

Cómo citar

1.
Surana K, Bhawar S, Mahajan S, Sonawane D. Una síntesis ecológica de catecol en H2O2 mediante el uso de catalizadores preparados naturalmente: WEWSA y WECMA. Ars Pharm [Internet]. 19 de septiembre de 2025 [citado 21 de septiembre de 2025];66(4):483-92. Disponible en: https://revistaseug.ugr.es/index.php/ars/article/view/34536

Número

Sección

Originales Breves