Los extractos de Albizia julibrissin y Caesalpinia decapetala inducen la inhibición potencial de enzimas y el crecimiento celular a través de la actividad antiacetilcolinesterasa, antilipasa, antiglicación y citotoxicidad
DOI:
https://doi.org/10.30827/ars.v66i3.32202Palabras clave:
Cáncer; Enzimas; lipasa; Glucosilación; Cromatografía líquida de alta resolución; Productos naturalesResumen
Introducción: Las plantas medicinales son una fuente dinámica de salud humana debido a su potencial terapéutico en el tratamiento de diversas dolencias. Este estudio tuvo como objetivo determinar las actividades antiacetilcolinesterasa, antilipasa, antiglicación y anticancerígena de Albizia julibrissin y Caesalpinia decapetala. (family Fabaceae).
Métodos: Los extractos de hojas se prepararon para investigar sus capacidades inhibitorias contra la acetilcolinesterasa, la lipasa y los productos de glicación. El potencial anticancerígeno se evaluó contra las líneas celulares HeLa, PC3 y 3T3 utilizando el ensayo MTT y se realizó un análisis HPLC para cuantificar seis compuestos.
Resultados: Los resultados indicaron la mayor actividad anti-acetilcolinesterasa (IC50 2,391 µg/ml) en el extracto metanólico de A. julibrissin, mientras que la mayor actividad anti-lipasa (114,9 µg/ml) y anti-glicación (43,69 µg/ml) se registró en el extracto metanólico de C. decapetala. El mayor potencial citotóxico también se observó en C. decapetala contra las líneas celulares PC3, 3T3 y HeLa. (144,3 ppm, 201,0 ppm and 236,0 ppm). Al final, la HPLC mostró que A. julibrissin exhibe la mayor concentración de ácido clorogénico (56,06 ppm) y dihidrato de quercetina (15,71 ppm), mientras que los extractos de hojas de C. decapetala poseen la mayor concentración de ácido gálico. (73,55 ppm).
Conclusiones: Los resultados sugieren que estos extractos inhiben significativamente las actividades enzimáticas, los productos de glicación y el crecimiento de células citotóxicas y, por lo tanto, pueden ser utilizados como nuevos compuestos farmacológicos para tratar diversas enfermedades.
Descargas
Citas
Wojtunik-Kulesza KA, Oniszczuk A, Oniszczuk T, Waksmundzka-Hajnos M. The influence of common free radicals and antioxidants on development of Alzheimer’s Disease. Biomed Pharmacother. 2016;78:39–49. doi:10.1016/j.biopha.2015.12.024. DOI: https://doi.org/10.1016/j.biopha.2015.12.024
Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: a systematic review and meta-analysis. Alzheimers Dement. 2013; 9(1):63–75. doi:10.1016/j.jalz.2012.11.007. DOI: https://doi.org/10.1016/j.jalz.2012.11.007
Yiannopoulou KG, Papageorgiou SG. Current and future treatments in Alzheimer disease: an update. J Cent Nerv Syst Dis. 2020; 12:1179573520907397. doi:10.1177/1179573520907397. DOI: https://doi.org/10.1177/1179573520907397
Köse LP, Gülçin İ, Gören AC, Namiesnik J, Martinez-Ayala AL, Gorinstein S. LC–MS/MS analysis, antioxidant and anticholinergic properties of galanga (Alpinia officinarum Hance) rhizomes. Ind Crops Prod. 2015; 74:712–21. doi:10.1016/j.indcrop.2015.05.034. DOI: https://doi.org/10.1016/j.indcrop.2015.05.034
Chu YC, Chang CH, Liao HR, Fu SL, Chen JJ. Anti-cancer and anti-inflammatory activities of three new chromone derivatives from the marine-derived Penicillium citrinum. Mar Drugs. 2021; 19(8):408. doi:10.3390/md19080408. DOI: https://doi.org/10.3390/md19080408
Hossain MJ, Al-Mamun M, Islam MR. Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Sci Rep. 2024; 7(3):e2004. doi:10.1002/hsr2.2004. DOI: https://doi.org/10.1002/hsr2.2004
Mata-Torres G, Andrade-Cetto A, Espinoza-Hernandez F. Approaches to decrease hyperglycemia by targeting impaired hepatic glucose homeostasis using medicinal plants. Front Pharmacol. 2021; 12:809994. doi:10.3389/fphar.2021.809994. DOI: https://doi.org/10.3389/fphar.2021.809994
Ramsay RR, Tipton KF. Assessment of enzyme inhibition: a review with examples from the development of monoamine oxidase and cholinesterase inhibitory drugs. Molecules. 2017; 22(7):1192. doi:10.3390/molecules22071192. DOI: https://doi.org/10.3390/molecules22071192
Xu-Dong H, Li-Lin S, Yun-Feng C, Yi-Nan W, Qi Z, Sheng-Quan F, et al. Pancreatic lipase inhibitory constituents from Fructus Psoraleae. Chin J Nat Med. 2020; 18(5):369–78. doi:10.1016/S1875-5364(20)30043-1. DOI: https://doi.org/10.1016/S1875-5364(20)30043-1
de Sanjose S, Tsu VD. Prevention of cervical and breast cancer mortality in low-and middle-income countries: a window of opportunity. Int J Womens Health. 2019; 11:381–6. doi:10.2147/IJWH.S197115. DOI: https://doi.org/10.2147/IJWH.S197115
Kang J, Huo CH, Li Z, Li ZP. New ceramides from the flower of Albizia julibrissin. Chin Chem Lett. 2007; 18(2):181–4. doi:10.1016/j.cclet.2006.12.042. DOI: https://doi.org/10.1016/j.cclet.2006.12.042
Ikeda T, Fujiwara S, Araki K, Kinjo J, Nohara T, Miyoshi T. Cytotoxic glycosides from Albizia julibrissin. J Nat Prod. 1997; 60(2):102–7. doi:10.1021/np960556t. DOI: https://doi.org/10.1021/np960556t
Gallego MG, Skowyra M, Gordon MH, Azman NAM, Almajano MP. Effect of leaves of Caesalpinia decapetala on oxidative stability of oil-in-water emulsions. Antioxidants. 2017; 6(1):19. doi:10.3390/antiox6010019. DOI: https://doi.org/10.3390/antiox6010019
Parveen A, Akash MS, Rehman K, Mahmood Q, Qadir MI. Analgesic, anti-inflammatory and anti-pyretic activities of Caesalpinia decapetala. Bioimpacts. 2014; 4(1):43. doi:10.5681/bi.2014.013.
Chen Z, Zhang D, Guo JJ, Tao W, Gong RX, Yao L, et al. Active components, antioxidant, inhibition on metabolic syndrome-related enzymes, and monthly variations in mature leaf hawk tea. Molecules. 2019; 24(4):657. doi:10.3390/molecules24040657. DOI: https://doi.org/10.3390/molecules24040657
Franco RR, Zabisky LF, de Lima Júnior JP, Alves VH, Justino AB, Saraiva AL, et al. Antidiabetic effects of Syzygium cumini leaves: A non-hemolytic plant with potential against processes of oxidation, glycation, inflammation, and digestive enzymes catalysis. J Ethnopharmacol. 2020; 261:113132. doi:10.1016/j.jep.2020.113132. DOI: https://doi.org/10.1016/j.jep.2020.113132
Masood S, et al. Zn(II) and Cd(II) pincer complexes bearing meta alkylated pyridinium amidates; synthesis & preliminary anticancer studies. New J Chem. 2023;47(47):21845–53. DOI: https://doi.org/10.1039/D3NJ04131J
Mehmood R, Sadiq A, Alsantali RI, Mughal EU, Alsharif MA, Naeem N, et al. Synthesis and evaluation of 1,3,5-triaryl-2-pyrazoline derivatives as potent dual inhibitors of urease and α-glucosidase together with their cytotoxic, molecular modeling, and drug-likeness studies. ACS Omega. 2022; 7(4):3775–95. doi:10.1021/acsomega.1c06694. DOI: https://doi.org/10.1021/acsomega.1c06694
Abdelkhalek A, Salem MZ, Kordy AM, Salem AZ, Behiry SI. Antiviral, antifungal, and insecticidal activities of Eucalyptus bark extract: HPLC analysis of polyphenolic compounds. Microb Pathog. 2020; 147:104383. doi:10.1016/j.micpath.2020.104383. DOI: https://doi.org/10.1016/j.micpath.2020.104383
Tuzimski T, Petruczynik A. Determination of anti-Alzheimer’s disease activity of selected plant ingredients. Molecules. 2022; 27(10):3222. doi:10.3390/molecules27103222. DOI: https://doi.org/10.3390/molecules27103222
Ferreira J, Santos S, Pereira H. In vitro screening for acetylcholinesterase inhibition and antioxidant activity of Quercus suber cork and corkback extracts. Evid Based Complement Alternat Med. 2020;2020:3825629. doi:10.1155/2020/3825629. DOI: https://doi.org/10.1155/2020/3825629
Hussein ME, Mohamed OG, El-Fishawy AM, El-Askary HI, Hamed AA, Abdel-Aziz MM, et al. Anticholinesterase activity of budmunchiamine alkaloids revealed by comparative chemical profiling of two Albizia spp., molecular docking, and dynamic studies. Plants. 2022; 11(23):3286. doi:10.3390/plants11233286. DOI: https://doi.org/10.3390/plants11233286
Zengin G, Mahomoodally MF, Picot-Allain MCN, Sinan KI, Ak G, Etienne OK, et al. Chemical composition, biological properties and bioinformatics analysis of two Caesalpina species: A new light in the road from nature to pharmacy shelf. J Pharm Biomed Anal. 2021; 198, 114018. doi: 10.1016/j.jpba.2021.114018. DOI: https://doi.org/10.1016/j.jpba.2021.114018
Gomes AF, Almeida MP, Leite MF, Schwaiger S, Stuppner H, Halabalaki M, et al. Seasonal variation in the chemical composition of two chemotypes of Lippia alba. Food Chem. 2019; 273:186–93. doi:10.1016/j.foodchem.2017.11.089. DOI: https://doi.org/10.1016/j.foodchem.2017.11.089
Herrera T, Del Hierro JN, Fornari T, Reglero G, Martin D. Inhibitory effect of quinoa and fenugreek extracts on pancreatic lipase and α-amylase under in vitro traditional conditions or intestinal simulated conditions. Food Chem. 2019; 270:509–17. doi:10.1016/j.foodchem.2018.07.145. DOI: https://doi.org/10.1016/j.foodchem.2018.07.145
Ruangaram W, Kato E. Selection of Thai medicinal plants with anti-obesogenic potential via in vitro methods. Pharmaceuticals. 2020; 13(4):56. doi:10.3390/ph13040056. DOI: https://doi.org/10.3390/ph13040056
Sirichai P, Kittibunchakul S, Thangsiri S, On-Nom N, Chupeerach C, Temviriyanukul P, et al. Impact of drying processes on phenolics and in vitro health-related activities of indigenous plants in Thailand. Plants. 2022; 11(3):294. doi:10.3390/plants11030294. DOI: https://doi.org/10.3390/plants11030294
Wang R, Wang L, Zhang L, Wan S, Li C, Liu S. Solvents effect on phenolics, iridoids, antioxidant activity, antibacterial activity, and pancreatic lipase inhibition activity of noni (Morinda citrifolia L.) fruit extract. Food Chem. 2022; 377:131989. doi:10.1016/j.foodchem.2021.131989. DOI: https://doi.org/10.1016/j.foodchem.2021.131989
Zeng SL, Li SZ, Wei MY, Chen BZ, Li P, Zheng GD, et al. Evaluation of anti-lipase activity and bioactive flavonoids in the Citri Reticulatae Pericarpium from different harvest times. Phytomedicine. 2018; 43:103–9. doi:10.1016/j.phymed.2018.04.008. DOI: https://doi.org/10.1016/j.phymed.2018.04.008
Wei XH, Yang SJ, Liang N, Hu DY, Jin LH, Xue W, et al. Chemical constituents of Caesalpinia decapetala (Roth) alston. Molecules. 2013; 18(1):1325–36. doi:10.3390/molecules18011325. DOI: https://doi.org/10.3390/molecules18011325
Han Q, Qian Y, Wang X, Zhang Q, Cui J, Tu P, et al. Oleanane-type saponins and prosapogenins from Albizia julibrissin and their cytotoxic activities. Phytochemistry. 2021; 185:112674. doi:10.1016/j.phytochem.2021.112674. DOI: https://doi.org/10.1016/j.phytochem.2021.112674
Kavitha CN, Raja KD, Rao SK. Antitumor activity of Albizia lebbeck L. against Ehrlich ascites carcinoma in vivo and HeLa and A549 cell lines in vitro. J Cancer Res Ther. 2021; 17(2), 491-498. doi: 10.4103/jcrt.JCRT_454_9. DOI: https://doi.org/10.4103/jcrt.JCRT_454_19
Desai TH, Joshi SV. Anticancer activity of saponin isolated from Albizia lebbeck using various in vitro models. J Ethnopharm. 2019; 231, 494-502. doi: 10.016/j.jep.2018.11.004. DOI: https://doi.org/10.1016/j.jep.2018.11.004
Han Q, Qian Y, Wang X, Zhang Q, Cui J, Tu P, et al. Cytotoxic oleanane triterpenoid saponins from Albizia julibrissin. Fitoterapia. 2017; 121:183–93. doi:10.1016/j.fitote.2017.07.015. DOI: https://doi.org/10.1016/j.fitote.2017.07.015
Ghavidel A, Bak M, Hofmann T, Hosseinpourpia R, Vasilache V, Sandu I. Comparison of chemical compositions in wood and bark of Persian silk tree (Albizia julibrissin Durazz.). Wood Mater Sci Eng. 2022; 17(6):759–70. doi:10.1080/17480272.2021.1953141. DOI: https://doi.org/10.1080/17480272.2021.1953141
Li YT, Liu H, Meng WS, Zhou T, Gong ZP, Huang Y, Zheng L. Simultaneous determination of content of eight components in Caesalpinia decapetala by UPLC-MS/MS. Zhongguo Zhong yao za zhi= Zhongguo Zhongyao Zazhi= China J Chin Mater Med. 2022; 47(3): 692-700. doi: 10.19540/j.cnki.cjcmm.20211011.201.
Li W, Yang HJ. Isolation and identification of lignans and other phenolic constituents from the stem bark of Albizia julibrissin Durazz and evaluation of their nitric oxide inhibitory activity. Molecules. 2020; 25(9):2065. doi:10.3390/molecules25092065. DOI: https://doi.org/10.3390/molecules25092065
Van Kiem P, Van Minh C, Huong HT, Lee JJ, Kim YH. Caesaldecan, a cassane diterpenoid from the leaves of Caesalpinia decapetala. Chem Pharm Bull. 2005;53(4):428–30. doi:10.1248/cpb.53.428. DOI: https://doi.org/10.1248/cpb.53.428
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Gul-e-Saba Chaudhry

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos que se publican en esta revista están sujetos a los siguientes términos en relación a los derechos patrimoniales o de explotación:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, la cual se distribuirá con una licencia Creative Commons BY-NC-SA 4.0 que permite a terceros reutilizar la obra siempre que se indique su autor, se cite la fuente original y no se haga un uso comercial de la misma.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la fuente original de su publicación.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en repositorios institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).