Evaluación del potencial probiótico de la cepa Bacillus velezensis SNR14-4 de branquias de tilapia del Nilo mediante un enfoque genómico e in vitro
DOI:
https://doi.org/10.30827/ars.v66i2.31858Palabras clave:
Bacillus velezensis, tilapia del Nilo, Probióticos, Acuicultura, Antimicrobiano, secuencia del genomaResumen
Introducción: La presente investigación evaluó una nueva cepa de Bacillus velezensis SNR14-4, aislada de las branquias de tilapia del Nilo con la intención de considerarla como un contendiente probiótico prometedor.
Métodos: Inicialmente, se llevó a cabo un análisis extenso del genoma del aislado particular empleando herramientas bioinformáticas para anticipar sus características y potenciales atributos probióticos. El genoma total de SNR14-4, reconocido como B. velezensis mediante ARNr 16S y secuenciación del genoma completo y análisis filogenético, está compuesto por un cromosoma circular singular con un tamaño de genoma de 4,1 Mb, una longitud total de 4.183.910 pb y una longitud media de 4183910 pb. contenido de guanina-citosina (GC) del 46,52 %. Se adquirieron conocimientos valiosos utilizando AntiSMASH para detectar grupos de genes biosintéticos de metabolitos secundarios, y se logró la anotación de genes funcionales relevantes para los rasgos probióticos utilizando RASTtk y PROKKA. La ausencia de elementos de virulencia, determinada mediante análisis genómico, facilitó una exploración in vitro específica.
Resultados: SNR14-4 mostró características probióticas notables y demostró eficacia antimicrobiana contra patógenos comunes de los peces. El análisis HR-LCMS QTOF del extracto microbiano reveló varios compuestos antimicrobianos potentes sintetizados por la cepa.
Conclusiones: B. velezensis SNR14-4 se muestra prometedor como candidato a probiótico, ya sea como punto de fuente único o como parte de consorcios de probióticos formados por cepas similares.
Descargas
Citas
Fitzsimmons K M, Gonzalez-Alanis P, Martinez-Garcia R. Why is tilapia becoming the most important food fish on the planet? In Proceedings of the 9th International Symposium on tilapia in Aquaculture, Shanghai Ocean University, Shanghai, China. 2011. 22-24 April 2011 8–16.
Prabu E, Rajagopalsamy CBT, Ahilan B, Jeevagan IJMA, Renuhadevi M, Tilapia – An Excellent Candidate Species for World Aquaculture: A Review. Annu. Res. Rev. Biol. 2019: 1–14. doi:10.9734/arrb/2019/v31i330052.
Santos R A, Oliva-Teles A, Pousão-Ferreira P, Jerusik R, Saavedra M J, Enes P, Serra C R. Isolation and characterization of fish-gut Bacillus spp. as surce of natural antimicrobial compounds to fight aquaculture bacterial diseases. Marine Biotechnology., 2021;23: pp.276-293. doi: 10.1007/s10126-021-10022-x.
Hesami S, Parkman J, MacInnes JI, Gray JT, Gyles CL, Lumsden John S, Antimicrobial Susceptibility of Flavobacterium psychrophilum Isolates from Ontario. J. Aquat. Anim. Health. 2010; 22: 39–49. doi: 10.1577/H09-008.1.
FAO, Tilapia lake virus disease strategy manual, 2021. FAO.
Wan MLY, Forsythe SJ, El-Nezami H, Probiotics interaction with foodborne pathogens: a potential alternative to antibiotics and future challenges. Crit. Rev. Food Sci. Nutr. 2019;59:3320–3333. doi: 10.1080/10408398.2018.1490885.
Madhavan S, Dinesh N, Muhammed R N, John D, Hariharan S, Nevin K. G. Bioinformatic insights into the xenobiotic degradation potential gene clusters of fish-associated novel Bacillus velezensis SNR14-4. Env Exp Biol, 2024; 22(2):79–86. Doi:10.22364/eeb.22.08.
Thankappan B, Ramesh D, Ramkumar S, Natarajaseenivasan K, Anbarasu K. Characterization of Bacillus spp. From the Gastrointestinal Tract of Labeo rohita—Toward to Identify Novel Probiotics Against Fish Pathogens. Appl. Biochem. Biotechnol., 2015;175: 340–353. doi: 10.1007/s12010-014-1270-y.
Banerjee G, Ray AK. The advancement of probiotics research and its application in fish farming industries. Res. Vet. Sci. 2017; 115:66–77. doi: 10.1016/j.rvsc.2017.01.016.
Elsabagh M, Mohamed R, Moustafa EM, Hamza A, Farrag F, Decamp O, Dawood MAO, Eltholth M. Assessing the impact of Bacillus strains mixture probiotic on water quality, growth performance, blood profile and intestinal morphology of Nile tilapia, Oreochromis niloticus. Aquac. Nutr. 2018; 24: 613–1622. doi.org/10.1111/anu.12797.
Fan B, Blom J, Klenk HP., Borriss, R., 2017. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an “Operational Group B. amyloliquefaciens” within the B. subtilis Species Complex. Front. Microbiol., 2017, Vol. 8. doi: 10.3389/fmicb.2017.00022.
Rabbee M, Ali, MD, Choi J, Hwang B, Jeong S, Baek K, Bacillus velezensis: A Valuable Member of Bioactive Molecules within Plant Microbiomes. Molecules. 2019; 24: 1046. doi.org/10.3390/separations10110552.
Khalid F, Khalid A, Fu Y, Hu Q, Zheng Y, Khan S, Wang Z. Potential of Bacillus velezensis as a probiotic in animal feed: a review. J. Microbiol. 2021; 59: 627–633. doi: 10.1007/s12275-021-1161-1.
Rehman NU, Abed RMM, Hussain H, Khan HY, Khan A, Khan AL. Ali, M. Al-Nasri, A. Al-Harrasi, K. Al-Rawahi, A.N., Wadood, A., Al-Rawahi, A., Al-Harrasi, A., Anti-proliferative potential of cyclotetrapeptides from Bacillus velezensis RA5401 and their molecular docking on G-Protein-Coupled Receptors. Microb. Pathog. 2018; 123: 419–425. doi: 10.1016/j.micpath.2018.07.043.
Ye M, Tang X, Yang R, Zhang H, Li F, Tao F, Li Fei, Wang Z. characteristics and Application of a Novel Species of Bacillus : Bacillus velezensis. ACS Chem. Biol. 2018; 13: 500–505. doi: 10.1021/acschembio.7b00874.
Yi Y, Zhang Z, Zhao F, Liu H, Yu L, Zha J, Wang G. Probiotic potential of Bacillus velezensis JW: Antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus. Fish Shellfish Immunol. 2018;. 78: 322–330. doi: 10.1016/j.fsi.2018.04.055.
Zhang DX, Kang YH, Zhan S, Zhao ZL, Jin SN, Chen C, Zhang L, Shen JY, Wang CF, Wang GQ, Shan XF, Qian AD. Effect of Bacillus velezensis on Aeromonas veronii-Induced Intestinal Mucosal Barrier Function Damage and Inflammation in Crucian Carp (Carassius auratus). Front. Microbiol. 2019; 10: 2663. doi: 10.3389/fmicb.2019.02663.
Zhou S, Xia Y, Zhu C, Chu W. Isolation of Marine Bacillus sp. with Antagonistic and Organic-Substances-Degrading Activities and Its Potential Application as a Fish Probiotic. Mar. Drugs. 2018; 196. doi: 10.3390/md16060196
Giri SS, Sukumaran V, Dangi NK, Characteristics of Bacterial Isolates from the Gut of Freshwater Fish, Labeo rohita that May be Useful as Potential Probiotic Bacteria. Probiotics Antimicrob. Proteins. 2012; 4: 238–242. doi: 10.1007/s12602-012-9119-6.
Xiong Q, Liu D, Zhang H, Dong X, Zhang G, Liu Y, Zhang R. Quorum sensing signal autoinducer-2 promotes root colonization of Bacillus velezensis SQR9 by affecting biofilm formation and motility. Appl. Microbiol. Biotechnol. 2020; 104: 7177–7185. doi: 10.1007/s00253-020-10713-w.
An J, Zhu W, Liu Y, Zhang X, Sun L, Hong P, Wang Y, Xu C, Xu D, Liu H. Purification and characterization of a novel bacteriocin CAMT2 produced by Bacillus amyloliquefaciens isolated from marine fish Epinephelus areolatus. Food Cont. 2015; 51: 278–282. doi:10.1016/j.foodcont.2014.11.038.
Green MR, Sambrook J. Isolating DNA from Gram-Negative Bacteria. Cold Spring Harb Protoc. 2017; 3: 2017. doi: 10.1101/pdb.prot093369.
Ray AK, Roy T, Mondal S, Ringà E. Identification of gut-associated amylase, cellulase and protease-producing bacteria in three species of Indian major carps. Aquac. Res. 2009; 41(10): 1462-1469. doi:10.1111/j.1365-2109.2009.02437.x
Reda RM, Selim KM, El-Sayed HM, El-Hady MA. In Vitro Selection and Identification of Potential Probiotics Isolated from the Gastrointestinal Tract of Nile Tilapia, Oreochromis niloticus. Probiotics Antimicrob. Proteins. 2018; 10: 692–703. doi: 10.1007/s12602-017-9314-6.
Meier-Kolthoff JP, Gö. ker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. 2019; 10(1): 2182. doi: 10.1038/s41467-019-10210-3.
Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022; 50(D1):D801-D807. doi: 10.1093/nar/gkab902
Jolley, K.A., Bray, J.E., Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018;24:124. doi: 10.12688/wellcomeopenres.14826.1.
Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 2016; 32(6): 929-931. doi: 10.1093/bioinformatics/btv681.
Schwengers O, Jelonek L, Dieckmann MA, Beyvers S, Blom J, Goesmann. A.Bakta: Rapid and Standardized Annotation of Bacterial Genomes via Alignment-Free Sequence Identification Microbial Genome. 2021; 7/11: 000685. doi: 10.1099/mgen.0.000685
Tanizawa Y, Fujisawa T, Nakamura Y, DFAST: A Flexible Prokaryotic Genome Annotation Pipeline for Faster Genome Publication’, ed. by John Hancock Bioinformatics. 2018; 34/6: 1037–1039. doi: 10.1093/bioinformatics/btx713.
Olson RD, Assaf R, Brettin T, Conrad N, Cucinell C, Davis JJ, Dempsey DM, Dickerman A, Dietrich EM, Kenyon RW, Kuscuoglu M, Lefkowitz EJ, Lu J, Machi D, Macken CT. et al. Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): A Resource Combining PATRIC, IRD and ViPR Nuc Acids Res. 2023; 51/D1: 2023, D678–689. doi: 10.1093/nar/gkac1003.
Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup FM. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol. 2014;52(5):1501-1510. doi: 10.1128/JCM.03617-13.
Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, Fetter A, Terlouw BR, Metcalf WW. EJN, van Wezel GP, Medema MH, Weber T. antiSMASH 7.0: New and Improved Predictions for Detection, Regulation, Chemical Structures and Visualization Nucleic Acids Res. 2023; 51/W1: W46–50. doi: 10.1093/nar/gkad344.
Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, Finn RD., Bateman A. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021; 49(D1):D412-D419. doi: 10.1093/nar/gkaa913.
Meidong R, Khotchanalekha K, Doolgindachbaporn S, Nagasawa T., Nakao M, Sakai K, Tongpim S, Evaluation of probiotic Bacillus aerius B81e isolated from healthy hybrid catfish on growth, disease resistance and innate immunity of Pla-mong Pangasius bocourti. Fish Shellfish Immunol. 2018; 73:1-10. doi: 10.1016/j.fsi.2017.11.032.
Kuebutornye FKA, Lu Y, Abarike ED, Wang Z, Li Y, Sakyi ME, In vitro Assessment of the Probiotic Characteristics of Three Bacillus Species from the Gut of Nile Tilapia, Oreochromis niloticus. Prob Antimicrob. Prot. 2020; 12: 412–424. doi: 10.1007/s12602-019-09562-5.
Sam-On M F S, Mustafa S, Hashim AM, Yusof MT, Zulkifly S, Malek A Z A, Asrore M S M. Mining the genome of Bacillus velezensis FS26 for probiotic markers and secondary metabolites with antimicrobial properties against aquaculture pathogens. Microb Pathog. 2023;1181:106161. doi: 10.1016/j.micpath.2023.106161.
Kapse NG, Engineer AS, Gowdaman V, Wagh S, Dhakephalkar PK, Functional Annotation of the Genome Unravels Probiotic Potential of Bacillus Coagulans HS243. Genomics. 2019; 111/4: 921–929. doi: 10.1016/j.ygeno.2018.05.022.
Seemann T, Prokka: Rapid Prokaryotic Genome Annotation Bioinformatics. 2014; 30/14: 2068–2069. doi: 10.1093/bioinformatics/btu153.
Charteris WP, Kelly PM, Morelli L, Collins JK. Gradient Diffusion Antibiotic Susceptibility Testing of Potentially Probiotic Lactobacilli. J. Food Prot. 2021;64: 2007–2014. doi: 10.4315/0362-028x-64.12.2007.
Zhou S, Xia Y, Zhu C, Chu W. Isolation of Marine Bacillus sp. with Antagonistic and Organic-Substances-Degrading Activities and Its Potential Application as a Fish Probiotic. Mar. Drugs. 2018; 16: 196. doi: 10.3390/md16060196
Baofeng J, Amogelang R. Raphenya, Brian Alcock, Nicholas Waglechner, Peiyao Guo, CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database, Nucleic Acids Research. 2017; 45: D566–D573. doi: 10.1093/nar/gkw1004.
Mahfouz N, Ferreira I, Beisken S, von Haeseler A, Posch AE. Large-scale assessment of antimicrobial resistance marker databases for genetic phenotype prediction: a systematic review. J Antimicrob Chemother 2020;75(11):3099-3108. doi: 10.1093/jac/dkaa257.
Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75(12): 3491-3500. doi: 10.1093/jac/dkaa345.
Cosentino S, Voldby Larsen M, Møller Aarestrup F, Lund O. PathogenFinder--distinguishing friend from foe using bacterial whole genome sequence data. PLoS One. 2013; 8(10): e77302. doi: 10.1371/journal.pone.0077302.
Zhou J, Xie Y, Liao Y, Li X, Li Y, Li S, Ma X, Lei S, Lin F, Jiang W, He YQ. Characterization of a Bacillus velezensis strain isolated from Bolbostemmatis Rhizoma displaying strong antagonistic activities against a variety of rice pathogens. Front. Microbiol. 2022; 13: 983781. doi: 10.3389/fmicb.2022.983781.
Chu J, Wang Y, Zhao B, Zhang X, Liu K, Mao L, Kalamiyets E. Isolation and identification of new antibacterial compounds from Bacillus pumilus. Appl. Microbiol. Biotechnol. 2019; 103:8375–8381. doi: 10.1007/s00253-019-10083-y.
Balakrishna A, In vitro evaluation of adhesion and aggregation abilities of four potential probiotic strains isolated from guppy (Poecilia reticulata). Braz. Arch. Biol. Technol. 2013; 56: 793–800. doi.org/10.1590/S1516-89132013000500010.
Kang M, Su X, Yun L, Shen Y, Feng J, Yang G, Meng X, Zhang J, Chang X. Evaluation of probiotic characteristics and whole genome analysis of Bacillus velezensis R-71003 isolated from the intestine of common carp (Cyprinus carpio L.) for its use as a probiotic in aquaculture. Aquac. Rep. 2022; 25: 101254. doi.org/10.1016/j.aqrep.2022.101254.
Wu Z, Qi X, Qu S, Ling F, Wang G. Dietary supplementation of Bacillus velezensis B8 enhances immune response and resistance against Aeromonas veronii in grass carp. Fish Shellfish Immunol. 2021; 115: 14–21. doi: 10.1016/j.fsi.2021.05.012.
Amoah K, Dong X, Tan B, Zhang S, Kuebutornye FKA, Chi S, Yang Q, Liu H, Zhang H, Yang Y.. In vitro Assessment of the Safety and Potential Probiotic Characteristics of Three Bacillus Strains Isolated From the Intestine of Hybrid Grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂). Front. Vet. Sci. 2021; 8: PP. 675962. doi: 10.3389/fvets.2021.675962.
Wang LT, Lee FL, Tai CJ, Kuo HP. Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens. Int. J. Syst. Evol. Microbiol. 2008; 58: 671–675. doi: 10.1099/ijs.0.65191-0.
Dunlap CA, Kim SJ, Kwon SW, Rooney AP.Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int. J. Syst. Evol. Microbiol. 2016; 66: 1212–1217. doi: 10.1099/ijsem.0.000858.
Huynh T, Vörös M, Kedves O, Turbat A, Sipos G, Leitgeb B, Kredics L, Vágvölgyi C, Szekeres A. Discrimination between the Two Closely Related Species of the Operational Group B. amyloliquefaciens Based on Whole-Cell Fatty Acid Profiling. Microorganisms. 2022; 10(2):418. doi:10.3390/microorganisms10020418
Adeniji AA, Loots DT, Babalola OO. Bacillus velezensis: phylogeny, useful applications, and avenues for exploitation. Appl. Microbiol. Biotechnol. 2019; 103:3669–3682. doi: 10.1007/s00253-019-09710-5.
Wei, M., Zhang, M., Huang, G., Yuan, Y., Fu, C., Yu, L., Coculture with two Bacillus velezensis strains enhances the growth of Anoectochilus plants by promoting nutrient assimilation and regulating rhizosphere microbial community. Ind. Crops Prod., 2020, Vol. 154,pp 112697. doi:10.1016/j.indcrop.2020.11269.
Liu KF, Chiu CH, Shiu YL, Cheng W, Liu CH. Effects of the probiotic, Bacillus subtilis E20, on the survival, development, stress tolerance, and immune status of white shrimp, Litopenaeus vannamei larvae. Fish Shellfish Immunol. 2010; 28: 837–844. doi: 10.1016/j.fsi.2010.01.012.
Elshaghabee FMF, Rokana N, Gulhane RD, Sharma C, Panwar H. Bacillus As Potential Probiotics: Status, Concerns, and Future Perspectives. Front. Microbiol. 2017; 8:1490. doi: 10.3389/fmicb.2017.01490.
Shija VM, Amoah K, Cai J. Effect of bacillus probiotics on the immunological responses of Nile tilapia (Oreochromis niloticus): A Rev Fishes. 2023; 8(7):366. doi.org/10.3390/fishes8070366.
Chen B, Zhou Y, Duan L, Gong X, Liu X, Pan K, Zeng D, Ni X, Zeng Y. Complete genome analysis of Bacillus velezensis TS5 and its potential as a probiotic strain in mice. Front Microbiol. 2023;14:1322910. doi: 10.3389/fmicb.2023.1322910.
Zhang DF, Gao YX, Ke XL, Wang YJ. Genomic analysis of Bacillus velezensis LF01 strain and the biocontrol effect of its secondary metabolites. J Fish China. 2022; 46 (2): 196-206.
Liu L, Jiang D, Ren Y, Shi C, Wang Y, Yin J, Wang Q, Zhang D. The Bacillus velezensis CYS06 Strain Exhibits Promising Applications in Fighting Grass Carp Bacterial Diseases. Fishes. 2024; 9(1):7. doi:10.3390/fishes9010007.
Gao X, Chen A, Zhou Y, Qian Q, Qin L, Tang X, Jiang Q, Zhang X. Genomic characterization and probiotic potency of Bacillus velezensis CPA1-1 reveals its potential for aquaculture applications. Aquaculture. 2025; 596:741852. doi 10.1016/j.aquaculture.2024.741852
Bin Hafeez A, Pełka K, Worobo R, Szweda P. In Silico Safety Assessment of Bacillus Isolated from Polish Bee Pollen and Bee Bread as Novel Probiotic Candidates. Int J Mol Sci. 2024; 25(1):666. doi: 10.3390/ijms25010666.
Hai NV. Research findings from the use of probiotics in tilapia aquaculture: A review. Fish Shellfish Immunol. 2015: 45: 592–597. doi: 10.1016/j.fsi.2015.05.026.
Krausova G, Hyrslova I, Hynstova I. In Vitro Evaluation of Adhesion Capacity, Hydrophobicity, and AutoAggregation of Newly Isolated Potential Probiotic Strains. Fermentation. 2019; 5: 100. doi:10.3390/fermentation5040100.
Monteagudo-Mera A, Rastall RA, Gibson GR, Charalampopoulos D, Chatzifragkou A. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl. Microbiol. Biotechnol. 2019; 103: 6463–6472. doi: 10.1007/s00253-019-09978-7.
Vinderola CG, Medici M, Perdigon G. Relationship between interaction sites in the gut, hydrophobicity, mucosal immunomodulating capacities and cell wall protein profiles in indigenous and exogenous bacteria. J. Appl. Microbiol. 2004; 96: 230–243. doi: 10.1046/j.1365-2672.2004.02158.x.
Hernandez-Hernandez O, Muthaiyan A, Moreno FJ, Montilla A, Sanz ML, Ricke SC. Effect of prebiotic carbohydrates on the growth and tolerance of Lactobacillus. Food Microbiol. 2012; 30: 355–361. doi: 10.1016/j.fm.2011.12.022.
Narimbi J, Mazumder D, Sammut J. Stable isotope analysis to quantify contributions of supplementary feed in Nile Tilapia Oreochromis niloticus (GIFT strain) aquaculture. Aquac. Res. 2018; 49: 1866–1874. doi:10.1111/are.13642.
Abarike, ED, Cai J, Lu Y, Yu H, Chen L, Jian J, Tang J, Jun L, Kuebutornye FKA. Effects of a commercial probiotic BS containing Bacillus subtilis and Bacillus licheniformis on growth, immune response and disease resistance in Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol. 2018; 82: 229–238. doi: 10.1016/j.fsi.2018.08.037.
Liu G, Kong Y, Fan Y, Geng CE, Peng D, Sun Ming. Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria. J Biotech. 2017; 249: 20–24. doi: 10.1016/j.jbiotec.2017.03.018.
Emam AM, Dunlap CA. Genomic and phenotypic characterization of Bacillus velezensis AMB-y1; a potential probiotic to control pathogens in aquaculture. Antonie Van Leeuwenhoek. 2020; 113: 2041–2052. doi: 10.1007/s10482-020-01476-5.
Prasanth D, Reddy LS, Dasari T, Bhavanam PR, Ahmad SF, Nalluri R, Pasala PK. LC/MS-Based Profiling of Hedyotis aspera Whole-Plant Methanolic Extract and Evaluation of Its Nephroprotective Potential against Gentamicin-Induced Nephrotoxicity in Rats Supported by In Silico Studies. Separations. 2023; 10(11):552.
Saleem H, Htar T T, Naidu R, Zengin G, Locatelli M, Tartaglia A, Ahemad N. Phytochemical composition and enzyme inhibition studies of Buxus papillosa CK Schneid. Processes. 2020;8(7):757. doi.org/10.3390/pr8070757.
Myers AL. Metabolism of the areca alkaloids–toxic and psychoactive constituents of the areca (betel) nut. Drug Metabol Rev. 2022;54(4):343-360. doi: 10.1080/03602532.2022.2075010.
Yoshikawa K, Katsuta S, Mizumori J, Arihara S, Four cycloartane triterpenoids and six related saponins from Passiflora edulis. J Nat Prod. 2000; 63(9):1229-1234. doi: 10.1021/np000126+.
Chandwani S, Dewala S, Chavan SM, Paul D, Kumar K, Amaresan N. Genomic, LC–MS, and FTIR Analysis of Plant Probiotic Potential of Bacillus albus for Managing Xanthomonas oryzae via Different Modes of Application in Rice (Oryza sativa L.). Prob Antimicrobial Prot. 2023; 18: 1-2. doi: 10.1007/s12602-023-10120-3.
Dutcher JD, Aspergillic Acid: An Antibiotic Substance Produced by Aspergillus Flavus: II. 1947.Bromination Reactions and Reduction With Sodium and Alcohol. J Biol Chem.1947;171(1): 341-53.
Seydlová G, Svobodová J. Review of surfactin chemical properties and the potential biomedical applications. Cent Eur J Med. 2008; 3: 123-33. doi.org/10.2478/s11536-008-0002-5.
Wu YS, Ngai S C, Goh B H, Chan K G, Lee LH, Chuah LH. Anticancer activities of surfactin and potential application of nanotechnology assisted surfactin delivery. Frontiers in Pharmacol. 2017; 8:761. doi: 10.3389/fphar.2017.00761
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Nevin Kottayath Govindan

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos que se publican en esta revista están sujetos a los siguientes términos en relación a los derechos patrimoniales o de explotación:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, la cual se distribuirá con una licencia Creative Commons BY-NC-SA 4.0 que permite a terceros reutilizar la obra siempre que se indique su autor, se cite la fuente original y no se haga un uso comercial de la misma.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la fuente original de su publicación.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en repositorios institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).