Aplicaciones de los nanoanticuerpos en la medicina
DOI:
https://doi.org/10.30827/ars.v63i2.22199Palabras clave:
anticuerpos, nanoanticuerpos, neoplasia, hepatitis, enfermedad de Alzheimer, Parkinson, diarrea, SARS-CoV-2Resumen
Introducción: Los nanoanticuerpos están compuestos únicamente por la región variable de la cadena pesada y se obtienen a partir de algunas especies de camélidos y tiburones. Tienen alta capacidad de unión, alta especificidad, tamaño pequeño, alta accesibilidad y alta penetración de los tejidos, por lo que potencialmente podrían ser utilizados para el tratamiento, diagnóstico y prevención de diferentes enfermedades.
Método: Se realizó una revisión bibliográfica de las aplicaciones médicas de los nanoanticuerpos. Se examinaron artículos científicos publicados en inglés y español desde 2015 a 2021 en las bases de datos Google Académico, ElSevier, PubMed, Clinical trials, Annual Reviews y ScienceDirect. Se prefirieron los estudios que demostraron mayor valor según el idioma, veracidad de la información y fecha de publicación.
Resultados y discusión: En total, se seleccionaron 21 artículos para ser evaluados y analizados, de los cuales 20 fueron estudios preclínicos y un estudio clínico. Los nanoanticuerpos destacan como alternativas terapéuticas, diagnósticas y preventivas contra el cáncer, la hepatitis C, el Alzheimer, el Parkinson, la diarrea provocada por rotavirus y el COVID-19.
Conclusiones: Los nanoanticuerpos pueden ser de gran utilidad para la prevención, diagnóstico y tratamiento de distintas enfermedades; sin embargo, se requiere continuar con el desarrollo de estudios clínicos y preclínicos que respalden la seguridad y eficacia de estos fármacos.
Descargas
Citas
Hameed A. Conventional and Nano- Antibodies and Their Future Uses. AAJMS. 2019;2(3):14-34.
Langjahr P, Sotelo P. Presente y futuro de los anticuerpos recombinantes terapéuticos. Mem Inst Investig Cienc Salud. 2016;14(2):110-21.
Abbas A, Lichtman A, Pillai S. Antigen Recognition in the Adaptive Immune System: Structure of Lymphocyte Antigen Receptors and Development of Immune Repertoires. En: Basic Immunology: Functions and Disorders of the Immune System [Internet]. 6ª ed. 2020. Disponible en: https://www-clinicalkey-com.ezproxy.sibdi.ucr.ac.cr/#!/content/book/3-s2.0-B9780323549431000040?scrollTo=%23hl0000384
Wong A, Sykora C, Rogers L, Higginbotham J, Wang J. Modified Nanoantibodies Increase Sensitivity in Avidin-Biotin Immunohistochemistry. Appl Immunohistochem Mol Morphol. 2018;26(9):682-8.
Li T, Vandesquille M, Koukouli F, Dudeffant C, Youssef I, Lenormand P, et al. Camelid single-domain antibodies: A versatile tool for in vivo imaging of extracellular and intracellular brain targets. J Controlled Release. 2016;243:1-10.
Liu W, Song H, Chen Q, Yu J, Xian M, Nian R, et al. Recent advances in the selection and identification of antigen-specific nanobodies. Mol Immunol. 2018;96:37-47.
Vázquez V. Análisis transcriptómico y desarrollo de una biblioteca de los genes codificantes para anticuerpos IgNAR del tiburón Heterodontus francisci. Baja California, México: Centro de Investigación Científica y de Educación Superior de Ensenada; 2018.
English H, Hong J, Ho M. Ancient species offers contemporary therapeutics: an update on shark VNAR single domain antibody sequences, phage libraries and potential clinical applications. 2020. Doi:10.1093/abt/tbaa001
Pedreáñez A, Mosquera J, Muñoz N, Tene D. Nanoanticuerpos: pequeñas moléculas, grandes posibilidades. Acta Bioclinica. 2021;11(22):296-319. Doi:0.6084/m9.figshare.14200553.
Parreno G, Vega C, Bok M, Adúriz M, Aguilar A. Nanoanticuerpos derivados de llamas: una alternativa innovadora para controlar las diarreas por rotavirus y norovirus humano. ANMAT. 2019;26-30.
Li C, Tang Z, Hu Z, Wang Y, Yang X, Mo F, et al. Natural Single-Domain Antibody-Nanobody: A Novel Concept in the Antibody Field. J Biomed Nanotechnol.2018;14(1):1-19.
Chen J, He Q, Xu Y, Fu J, Li Y, Tu Z, et al. Nanobody medicated immunoassay for ultrasensitive detection of cancer biomarker alpha-fetoprotein. Talanta. 2016;147:523-30. Doi: 10.1016/j.talanta.2015.10.027.
Van Impe K, Bethuyne J, Cool S, Impens F, Ruano-Gallego D, De Wever O, et al. A nanobody targeting the F-actin capping protein CapG restrains breast cancer metastasis. Breast Cancer Res BCR. 2013;15(6):R116. Doi: 10.1186/bcr3585.
Heukers R, Fan TS, Wit RH de, Senten JR van, Groof TWM de, Bebelman MP, et al. The constitutive activity of the virally encoded chemokine receptor US28 accelerates glioblastoma growth. Oncogene. 2018(30):1-12. Doi: 10.1038/s41388-018-0255-7.
Henan Cancer Hospital. Clinical Study of CD19/CD20 Bispecific Nanobody-derived CAR-T Cells in Refractroy/Relasped B Cell Lymphoma [Internet]. clinicaltrials.gov. 2019. Report No.: NCT03881761.
Jittavisutthikul S, Thanongsaksrikul J, Thueng-In K, Chulanetra M, Srimanote P, Seesuay W, et al. Humanized-VHH transbodies that inhibit HCV protease and replication. Viruses. 2015;7(4):2030-56.Doi: 10.3390/v7042030.
Vandesquille M, Li T, Po C, Ganneau C, Lenormand P, Dudeffant C, et al. Chemically-defined camelid antibody bioconjugate for the magnetic resonance imaging of Alzheimer’s disease. mAbs. 2017;9(6):1016-27.
Dorresteijn B, Rotman M, Faber D, Schravesande R, Suidgeest E, Weerd L van der, et al. Camelid heavy chain only antibody fragment domain against β-site of amyloid precursor protein cleaving enzyme 1 inhibits β-secretase activity in vitro and in vivo. FEBS J. 2015;282(18):3618-31.
Rincon M, Zhou L, Marneffe C, Voytyuk I, Wouters Y, Dewilde M, et al. AAV mediated delivery of a novel anti-BACE1 VHH reduces Abeta in an Alzheimer’s disease mouse model. bioRxiv. 2019;1-22.
Butler DC, Joshi SN, Genst ED, Baghel AS, Dobson CM, Messer A. Bifunctional Anti-Non-Amyloid Component α-Synuclein Nanobodies Are Protective In Situ. PLOS ONE. 2016;11(11):e0165964. Doi: 10.1371/journal.pone.0165964.
Iljina M, Hong L, Horrocks MH, Ludtmann MH, Choi ML, Hughes CD, et al. Nanobodies raised against monomeric ɑ-synuclein inhibit fibril formation and destabilize toxic oligomeric species. BMC Biol. 2017;15:57. Doi: 10.1186/s12915-017-0390-6.
Chatterjee D, Bhatt M, Butler D, De Genst E, Dobson CM, Messer A, et al. Proteasome-targeted nanobodies alleviate pathology and functional decline in an α-synuclein-based Parkinson’s disease model. Npj Park Di. 2018;4(1):1-10. Doi: 10.1038/s41531-018-0062-4.
Maffey L. Prevención y tratamiento de Rotavirus A mediante nanoanticuerpos VHH anti-VP6 [Tesis doctoral]. Buenos Aires: Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires; 2016.
Mendez, M. Vinculación, transferencia y utilidad social de los conocimientos : el caso de INCUINTA (2004-2019) [Tesis de grado]. Universidad Nacional de La Plata: Memoria Académica; 2021.
Crowell L, Goodwine C, Holt C, Rocha L, Vega C, Rodriguez S, et al. Development of a platform process for the production and purification of single-domain antibodies. Biotechnol Bioeng. 2021;118(9):3348-3358. Doi: 10.1002/bit.27724.
Amcheslavsky A, Wallace A, Ejemel M, Li Q, McMahon C, Stoppato M, et al. Anti-CfaE nanobodies provide broad cross-protection against major pathogenic enterotoxigenic Escherichia coli strains, with implications for vaccine design. Sci Rep. 2021;11(1):2751. Doi: 10.1038/s41598-021-81895-0.
Esperbent, C. Construyen una biblioteca de nanoanticuerpos de llamas contra la COVID-19. Revista de Investigaciones Agropecuarias. 2020;46(2):145-7.
Zhou Z, Wang X, Zhang X, Zhang Y, et al. Significance of neutralizing antibodies in COVID-19 therapy: progress and prospect. J Chin Pharm Sci. 2021;30(2):87-106. Doi: 10.5246/jcps.2021.02.008.
Hasson S, Al-Jabri A. Immunized camels and COVID-19. Asian Pac J Trop Med. 2020;13(6):239-241. Doi: 10.4103/1995-7645.282561.
Djemli S, Tahraoui A, Boussena M, Rouag F, et al. Camelid Antibodies May well be effective Against SARS-CoV-2 variants. 2021;6(6):604-606.
Sánchez C. Conociendo y comprendiendo la célula cancerosa: Fisiopatología del cáncer. Rev Médica Clínica Las Condes. 2013;24(4):553-62. Doi: 10.1016/S0716-8640(13)70659-X.
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57-70. Doi: 10.1016/s0092-8674(00)81683-9.
Mitrus I, Bryndza E, Sochanik A, Szala S. Evolving models of tumor origin and progression. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 2012;33(4):911-7. Doi: 10.1007/s13277-012-0389-0.
Van Audenhove I, Gettemans J. Nanobodies as Versatile Tools to Understand, Diagnose, Visualize and Treat Cancer. EBioMedicine. 2016;8:40-8. Doi: 10.1016/j.ebiom.2016.04.028.
Nikooharf A, Arezumand R, Mansouri K, Khoshi AH, Namdar Ahmadabad H. Development of a Recombinant Monospecific Anti-PLGF Bivalent Nanobody and Evaluation of it in Angiogenesis Modulation. Mol Biotechnol. 2020;62(11-12):580-8. Doi: 10.1007/s12033-020-00275-7.
Jiménez A. Virtual biopsy: seeing invisible cancer. SEBBM. 2018. Doi: 10.18567/sebbmdiv_ANC.2018.01.1.
Arezumand R, Alibakhshi A, Ranjbari J, Ramazani A, Muyldermans S. Nanobodies As Novel Agents for Targeting Angiogenesis in Solid Cancers. Front Immunol. 2017;0. Doi: 10.3389/fimmu.2017.01746.
Verhaar ER, Woodham AW, Ploegh HL. Nanobodies in cancer. Semin Immunol. 2020;101425. Doi: 10.1016/j.smim.2020.101425.
Guidotti LG, Chisari FV. Immunobiology and pathogenesis of viral hepatitis. Annu Rev Pathol Mech Dis. 2006;1(1):23-61. Doi: 10.1146/annurev.pathol.1.110304.100230.
Ganem D, Prince AM. Hepatitis B virus infection--natural history and clinical consequences. N Engl J Med. 2004;350(11):1118-29. Doi: 10.1056/NEJMra031087.
Ferrari C, Missale G, Boni C, Urbani S. Immunopathogenesis of hepatitis B. J Hepatol. 2003;39 Suppl 1:S36-42. Doi: 10.1016/s0168-8278(03)00137-5.
Pawlotsky J-M. Pathophysiology of hepatitis C virus infection and related liver disease. Trends Microbiol. 2004;12(2):96-102. Doi: 10.1016/j.tim.2003.12.005.
Rius S, Tormos AM, Pérez S, Taléns R. Vascular pathology: Cause or effect in Alzheimer disease?. Neurol Engl Ed. 2018;33(2):112-20. Doi: 10.1016/j.nrl.2015.07.010.
Apostolova L. Alzheimer Disease. Contin Lifelong Learn Neurol. 2016;22(2):419-34. Doi: 10.1212/CON.0000000000000307.
Asefy Z, Hoseinnejhad S, Ceferov Z. Nanoparticles approaches in neurodegenerative diseases diagnosis and treatment. Neurol Sci. 2021;42(7):2653-60. Doi: 10.1007/s10072-021-05234-x.
Marín M DS, Carmona V H, Ibarra Q M, Gámez C M, Marín M DS, Carmona V H, et al. Enfermedad de Parkinson: fisiopatología, diagnóstico y tratamiento. Rev Univ Ind Santander Salud. 2018;50(1):79-92. Doi: 10.18273/revsal.v50n1-2018008.
Vázquez GE, Zoghbi HY. Parkinson’s Disease Genetics and Pathophysiology. Annu Rev Neurosci. 2021;44(1):87-108. Doi: 10.1146/annurev-neuro-100720-034518.
DeMaagd G, Philip A. Parkinson’s Disease and Its Management. Pharm Ther. 2015;40(8):504-32.
de Lau LML, Breteler MMB. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5(6):525-35. Doi: 10.1016/S1474-4422(06)70471-9.
Michel PP, Hirsch EC, Hunot S. Understanding Dopaminergic Cell Death Pathways in Parkinson Disease. Neuron. 2016;90(4):675-91.Doi: 10.1016/j.neuron.2016.03.038.
α-Synuclein Promotes SNARE-Complex Assembly in Vivo and in Vitro | Science. 2010. doi: 10.1126/science.1195227.
Giasson BI, Murray IVJ, Trojanowski JQ, Lee VM-Y. A Hydrophobic Stretch of 12 Amino Acid Residues in the Middle of α-Synuclein Is Essential for Filament Assembly *. J Biol Chem. 2001;276(4):2380-6. Doi: 10.1074/jbc.M008919200.
Múñez E, Pintos I, Ramos A. Protocolo diagnóstico y tratamiento de la diarrea en el paciente inmunocomprometido. Med - Programa Form Médica Contin Acreditado. 2018;12(55):3285-3288. Doi: 10.1016/j.med.2018.04.017.
Barraca J. Protocolo diagnóstico de la diarrea crónica. Med - Programa Form Médica Contin Acreditado.2016;12(4):197-202. Doi: 10.1016/j.med.2016.02.013.
Arco R, Lázaro J, Díaz P. Protocolo diagnóstico y terapéutico de la diarrea aguda. Med - Programa Form Médica Contin Acreditado. 2019;12(87):5135-9. Doi: 10.1016/j.med.2019.10.007.
Escribano L, Rodríguez A, Centeno G. Protocolo diagnóstico etiopatogénico de la diarrea crónica. Med - Programa Form Médica Contin Acreditado. 2020;13(1):38-44. Doi: 10.1016/j.med.2020.01.005.
Fei P, Chen J, Jiang Y, Bai H, et al. Rotavirus-Induced Diarrhea Changes the Proteins, Amino Acids and Fatty Acids Profiles in Fecal Samples of the Infants. Iran J Pediatr. 2021;31(1). Doi: 10.5812/ijp.100031.
Maffey L, Vega CG, Parreño V, Garaicoechea L. Controlling Rotavirus-associated diarrhea: Could single-domain antibody fragments make the difference? Rev Argent Microbiol. 2015;47(4):368-79. Doi: 10.1016/j.ram.2015.09.005.
Fernandes C, Pereira S, Luiz M, Zuliani J, Furtado G, Stabeli R. Camelid Single-Domain Antibodies As an Alternative to Overcome Challenges Related to the Prevention, Detection, and Control of Neglected Tropical Diseases. Front Immunol. 2017;8:653. Doi: 10.3389/fimmu.2017.00653.
Pérez M, Gómez J, Dieguez R. Características clínico-epidemiológicas de la COVID-19. Rev habanera cienc médi. 2020;19 (2):1-15.
Serra M. COVID-19. De la patogenia a la elevada mortalidad en el adulto mayor y con comorbilidades. Rev habanera cienc médi. 2021;19(3).
Avila J. Coronavirus COVID-19; patogenia, prevención y tratamiento. 4ed. Lejona: salusplay; 2020. 19-25 p.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Celeste Ortega-Monge, Noelia Arce-Rodríguez, Maripaz Santamaría-Muñoz, Marianela Chavarría-Rojas, María Fernanda Rojas Salas, Eleaneth Baltodano Viales, German L Madrigal Redondo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos que se publican en esta revista están sujetos a los siguientes términos en relación a los derechos patrimoniales o de explotación:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, la cual se distribuirá con una licencia Creative Commons BY-NC-SA 4.0 que permite a terceros reutilizar la obra siempre que se indique su autor, se cite la fuente original y no se haga un uso comercial de la misma.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la fuente original de su publicación.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en repositorios institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).