Fibrosis Quística: tratamiento actual y avances con la nanotecnología

Autores/as

  • María Oliva Guerra Morillo Universidad de Sevilla
  • Antonio María Antonio María Rabasco Álvarez Universidad de Sevilla
  • María Luisa González Rodríguez Universidad de Sevilla

Palabras clave:

fibrosis quística, CTFR, nanopartículas, liposomas

Resumen

Introducción: Actualmente, los tratamientos existentes para tratar la fibrosis quística (FQ) están diseñadospara controlar sus síntomas, consistentes principalmente en retención de moco e infección crónica.Se propone la vía pulmonar como alternativa para la administración de los fármacos, principalmente antimicrobianos.Sin embargo, su rápido aclaramiento, que conduce a niveles bajos de fármaco e incrementode los regímenes posológicos, así como la aparición de efectos adversos, hacen de la nanotecnologíauna estrategia interesante para esta enfermedad.

Objetivo: estudiar y analizar los diferentes sistemas nanoparticulares existentes para su uso por víapulmonar, concretando en el uso de sistemas lipídicos para el tratamiento de la FQ.

Método: se realizó una búsqueda no sistemática de artículos en diferentes bases de datos, en los últimos 10 años principalmente, siguiendo pautas establecidas de palabras clave.

Resultados: Los progresos que se han conseguido en los últimos años hacen que la FQ pase a ser una enfermedad de adultos. Los tratamientos que se están usando en la actualidad están siendo cada vez más desplazados por otras alternativas, como los sistemas nanoparticulares, siendo idóneos para la administración pulmonar debido a su pequeño tamaño, su liberación sostenida y su elevada biocompatibilidad.Entre éstos, destacan los liposomas por su similitud estructural con el surfactante pulmonar, así comopor su capacidad de destruir las biopelículas bacterianas. La mayoría de las formulaciones encontradas contenían un solo fármaco.

Conclusión: Existen evidencias científicas que indican que la investigación debe dirigirse hacia el desarrollode formulaciones que sean capaces de destruir la biopelícula.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

María Oliva Guerra Morillo, Universidad de Sevilla

Departamento de farmacia y Tecnología Farmacéutica.

Estudiante de Doctorado. Programa de Doctorado en Farmacia

Antonio María Antonio María Rabasco Álvarez, Universidad de Sevilla

Departamento de Farmacia y Tecnología Farmacéutica

María Luisa González Rodríguez, Universidad de Sevilla

Departamento de Farmacia y Tecnología Farmacéutica.

Catedrática de Universidad

Citas

Bono-Neri F, Romano C, Isedeh A. Cystic fibrosis: advancing along the continuum. J Pediatr Health Care. 2018;33(3):242–54. Available from: https://doi.org/10.1016/j.pedhc.2018.08.008

Zhang S, Shrestha CL, Kopp BT. Cystic fibrosis transmembrane conductance regulator (CFTR) modulators have differential effects on cystic fibrosis macrophage function. Sci Rep. 2018;8(1):17066. Available from: http://www.nature.com/articles/s41598-018-35151-7

O’Grady K-AF, Cripps AW, Grimwood K. Paediatric and adult bronchiectasis: vaccination in prevention and management. Respirology. 2018; Available from: http://doi.wiley.com/10.1111/resp.13446

Cooney A, McCray P, Sinn P. Cystic fibrosis gene therapy: looking back, looking forward. Genes. 2018;9(11):538. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30405068

Smyth AR, Bell SC, Bojcin S, Bryon M, Duff A, Flume P, et al. European Cystic Fibrosis Society Standards of Care: Best Practice guidelines. J Cyst Fibros. 2014;13:S23–42. Available from: http://linkinghub.elsevier.com/retrieve/pii/S156919931400085X

Davis PB. Another beginning for cystic fibrosis therapy. N Engl J Med. 2015;373(3):274–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25981385

Parkins MD, Parkins VM, Rendall JC, Elborn S. Changing epidemiology and clinical issues arising in an ageing cystic fibrosis population. Ther Adv Respir Dis. 2011;5(2):105–19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21078692

Burgel PR, Bellis G, Olesen HV., Viviani L, Zolin A, Blasi F, et al. Future trends in cystic fibrosis demography in 34 European countries. Eur Respir J. 2015;46(1):133–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25792639

McCormick J, Mehta G, Olesen HV, Viviani L, Macek M, Mehta A. Comparative demographics of the European cystic fibrosis population: a cross-sectional database analysis. Lancet. 2010;375(9719):1007–13. Available from: http://dx.doi.org/10.1016/S0140-6736(09)62161-9

Conway S, Balfour-Lynn IM, De Rijcke K, Drevinek P, Foweraker J, Havermans T, et al. European Cystic Fibrosis Society Standards of Care: Framework for the Cystic Fibrosis Centre. J Cyst Fibros. 2014;13:S3–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24856776

McCloskey M, Redmond AOB, Hill A, Elborn JS. Clinical features associated with a delayed diagnosis of cystic fibrosis. Respiration. 2000;67(4):402–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10940794

Bartlett JR, Friedman KJ, Ling SC, Pace RG, Bell SC, Bourke B, et al. Genetic modifiers of liver disease in cystic fibrosis. JAMA. 2009;302(10):1076. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19738092

McKone EF, Velentgas P, Swenson AJ, Goss CH. Association of sweat chloride concentration at time of diagnosis and CFTR genotype with mortality and cystic fibrosis phenotype. J Cyst Fibros. 2015;14(5):580–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25660278

Palomaki GE, FitzSimmons SC, Haddow JE. Clinical sensitivity of prenatal screening for cystic fibrosis via CFTR carrier testing in a United States panethnic population. Genet Med. 2004;6(5):405–14.

Mayell SJ, Munck A, Craig JV, Sermet I, Brownlee KG, Schwarz MJ, et al. A European consensus for the evaluation and management of infants with an equivocal diagnosis following newborn screening for cystic fibrosis. J Cyst Fibros. 2009;8(1):71–8. Available from: https://www.sciencedirect.com/science/article/pii/S1569199308001422

Levy H, Farrell PM. New challenges in the diagnosis and management of cystic fibrosis. J Pediatr. 2015;166(6):1337–41.

Döring G, Flume P, Heijerman H, Elborn JS. Treatment of lung infection in patients with cystic fibrosis: current and future strategies. J Cyst Fibros. 2012;11(6):461–79. Available from: http://dx.doi.org/10.1016/j.jcf.2012.10.004

Courville CA, Tidwell S, Liu B, Accurso FJ, Dransfield MT, Rowe SM. Acquired defects in CFTR-dependent β-adrenergic sweat secretion in chronic obstructive pulmonary disease. Respir Res. 2014;15(1):25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24568560

Pagaduan JV, Ali M, Dowlin M, Suo L, Ward T, Ruiz F, et al. Revisiting sweat chloride test results based on recent guidelines for diagnosis of cystic fibrosis. Pract Lab Med. 2018;10:34–7.

Levy H, Farrell PM. New challenges in the diagnosis and management of cystic fibrosis. J Pediatr. 2015;166(6):1337–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26008169

Hadinoto K, Cheow WS. Nano-antibiotics in chronic lung infection therapy against Pseudomonas aeruginosa. Colloids Surf B: Biointerfaces. 2014;116:772–85. Available from: http://dx.doi.org/10.1016/j.colsurfb.2014.02.032

Barnes PJ. Theophylline. Am J Respir Crit Care Med. 2013;188(8):901–6. Available from: http://www.atsjournals.org/doi/abs/10.1164/rccm.201302-0388PP

Newman SP. Delivering drugs to the lungs: The history of repurposing in the treatment of respiratory diseases. Adv Drug Deliv Rev. 2018;133:5–18. Available from: https://doi.org/10.1016/j.addr.2018.04.010

Rafeeq MM, Murad HAS. Cystic fibrosis: Current therapeutic targets and future approaches. J Transl Med. 2017;15(1):1–9.

Borowitz D, Robinson KA, Rosenfeld M, Davis SD, Sabadosa KA, Spear SL, et al. Cystic fibrosis Foundation evidence-based guidelines for management of infants with cystic fibrosis. Journal of Pediatrics. 2009. Mosby Inc. 155.

Garbuzenko OB, Kbah N, Kuzmov A, Pogrebnyak N, Pozharov V, Minko T. Inhalation treatment of cystic fibrosis with lumacaftor and ivacaftor co-delivered by nanostructured lipid carriers. J Control Release. 2019;296:225–31.

Hodges CA, Conlon RA. Delivering on the promise of gene editing for cystic fibrosis. Vol. 6, Genes and Diseases. Chongqing University; 2019. p. 97–108.

Tronde A, Nordén B, Marchner H, Wendel AK, Lennernäs H, Bengtsson UH. Pulmonary absorption rate and bioavailability of drugs in vivo in rats: Structure-absorption relationships and physicochemical profiling of inhaled drugs. J Pharm Sci. 2003;92(6):1216–33.

Cryan SA, Sivadas N, Garcia-Contreras L. In vivo animal models for drug delivery across the lung mucosal barrier. Adv Drug Deliv Rev. 2007;59:1133–51.

Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010;392:1–19.

Weber S, Zimmer A, Pardeike J. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: a review of the state of the art. Eur J Pharm Biopharm. 2014;86(1):7–22. Available from: http://dx.doi.org/10.1016/j.ejpb.2013.08.013

Zhou QT, Leung SSY, Tang P, Parumasivam T, Loh ZH, Chan HK. Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv Drug Deliv Rev. 2014; Available from: http://www.ncbi.nlm.nih.gov/pubmed/25451137

Reis CP, Damgé C. Nanotechnology as a promising strategy for alternative routes of insulin delivery. Methods Enzymol. 2012;508:271–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22449931

Guagliardo R, Pérez-Gil J, De Smedt S, Raemdonck K. Pulmonary surfactant and drug delivery: focusing on the role of surfactant proteins. J Control Release. 2018;291:116–26. Available from: https://www.sciencedirect.com/science/article/pii/S0168365918305832

Possmayer F, Hall SB, Haller T, Petersen NO, Zuo YY, De la Serna JB, et al. Recent advances in alveolar biology: Some new looks at the alveolar interface. Respiratory Physiology and Neurobiology. 2010;173.

Andreassen S, Steimle KL, Mogensen ML, De La Serna JB, Rees S, Karbing DS. The effect of tissue elastic properties and surfactant on alveolar stability. J Appl Physiol. 2010;109(5):1369–77.

Parra E, Pérez-Gil J. Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chem Phys Lipids. 2015;185:153–75.

Alonso C, Waring A, Zasadzinski JA. Keeping lung surfactant where it belongs: protein regulation of two-dimensional viscosity. Biophys J. 2005;89(1):266–73.

Veldhuizen R, Nag K, Orgeig S, Possmayer F. The role of lipids in pulmonary surfactant. Biochim Biophys Acta. 1998;1408:90–108.

Zuo YY, Veldhuizen RAW, Neumann AW, Petersen NO, Possmayer F. Current perspectives in pulmonary surfactant — Inhibition, enhancement and evaluation. Biochim Biophys Acta - Biomembr. 2008;1778(10):1947–77. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0005273608001235

Liang Z, Ni R, Zhou J, Mao S. Recent advances in controlled pulmonary drug delivery. Drug Discov Today. 2015;20(3):380–9. Available from: http://dx.doi.org/10.1016/j.drudis.2014.09.020

Hess DR, Faarc R. Nebulizers: Principles and performance. 2000. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.492.62&rep=rep1&type=pdf

Garcia-Contreras L, Ibrahim M, Verma R. Inhalation drug delivery devices: technology update. Med Devices Evid Res. 2015;8:131. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25709510

Chandel A, Goyal AK, Ghosh G, Rath G. Recent advances in aerosolised drug delivery. Biomed Pharmacother. 2019;112:108601. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0753332218350066

Chougule MB, Padhi BK, Jinturkar KA, Misra A. Development of dry powder inhalers. Recent Pat Drug Deliv Formul. 2007;1(1):11–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19075871

Kuzmov A, Minko T. Nanotechnology approaches for inhalation treatment of lung diseases. J Control Release. 2015;219:500–18. Available from: https://doi.org/10.1016/j.jconrel.2015.07.024

Swaminathan J, Ehrhardt C. Liposomal delivery of proteins and peptides. Expert Opin Drug Deliv. 2012;9:1489–503.

Etzerodt A, Maniecki MB, Graversen JH, Møller HJ, Torchilin VP, Moestrup SK. Efficient intracellular drug-targeting of macrophages using stealth liposomes directed to the hemoglobin scavenger receptor CD163. J Control Release. 2012;160(1):72–80. Available from: https://www.sciencedirect.com/science/article/pii/S0168365912000399

Li N, Zhuang C, Wang M, Sun X, Nie S, Pan W. Liposome coated with low molecular weight chitosan and its potential use in ocular drug delivery. Int J Pharm. 2009;379(1):131–8. Available from: https://www.sciencedirect.com/science/article/pii/S0378517309004141

Garbuzenko OB, Mainelis G, Taratula O, Minko T. Inhalation treatment of lung cancer: the influence of composition, size and shape of nanocarriers on their lung accumulation and retention. Cancer Biol Med. 2014;11(1):44–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24738038

Geller DE. Comparing clinical features of the nebulizer, metered-dose inhaler, and dry powder inhaler. Respir Care. 2005;50(10):1313–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16185367

Mugabe C, Azghani AO, Omri A. Liposome-mediated gentamicin delivery: Development and activity against resistant strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients. J Antimicrob Chemother. 2005;55(2):269–71.

Gibson RL, Retsch-Bogart GZ, Oermann C, Milla C, Pilewski J, Daines C, et al. Microbiology, safety, and pharmacokinetics of aztreonam lysinate for inhalation in patients with cystic fibrosis. Pediatr Pulmonol. 2006;41(7):656–65.

Meers P, Neville M, Malinin V, Scotto AW, Sardaryan G, Kurumunda R, et al. Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J Antimicrob Chemother. 2008;61(4):859–68.

Okusanya OO, Bhavnani SM, Hammel J, Minic P, Dupont LJ, Forrest A, et al. Pharmacokinetic and pharmacodynamic evaluation of liposomal amikacin for inhalation in cystic fibrosis patients with chronic pseudomonal infection. Antimicrob Agents Chemother [Internet]. 2009;53(9):3847–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19451281

Alton EWFW, Baker A, Baker E, Boyd AC, Cheng SH, Coles RL, et al. The safety profile of a cationic lipid-mediated cystic fibrosis gene transfer agent following repeated monthly aerosol administration to sheep. Biomaterials. 2013;34(38):10267–77.

Pastor M, Moreno-Sastre M, Esquisabel A, Sans E, Viñas M, Bachiller D, et al. Sodium colistimethate loaded lipid nanocarriers for the treatment of Pseudomonas aeruginosa infections associated with cystic fibrosis. Int J Pharm. 2014;477(1–2):485–94.

Alton EWFW, Boyd AC, Porteous DJ, Davies G, Davies JC, Griesenbach U, et al. A phase I/IIa safety and efficacy study of nebulized liposome-mediated gene therapy for cystic fibrosis supports a multidose trial. Vol. 192, American Journal of Respiratory and Critical Care Medicine. American Thoracic Society. 2015. p. 1389–92.

Moreno-Sastre M, Pastor M, Esquisabel A, Sans E, Viñas M, Fleischer A, et al. Pulmonary delivery of tobramycin-loaded nanostructured lipid carriers for Pseudomonas aeruginosa infections associated with cystic fibrosis. Int J Pharm. 2016;498(1–2):263–73.

Castoldi A, Herr C, Niederstraßer J, Labouta HI, Melero A, Gordon S, et al. Calcifediol-loaded liposomes for local treatment of pulmonary bacterial infections. Eur J Pharm Biopharm. 2017;118:62–7.

Mashat M, Clark BJ, Assi KH, Chrystyn H. Assessment of recent nebulizer delivery systems using urinary pharmacokinetics method and aerodynamic characteristics of TOBI® nebulized dose following inhalation. J Drug Deliv Sci Technol. 2017;39:428–34.

Khatib I, Khanal D, Ruan J, Cipolla D, Dayton F, Blanchard JD, et al. Ciprofloxacin nanocrystals liposomal powders for controlled drug release via inhalation. Int J Pharm. 2019;566:641–51.

Bilton D, Pressler T, Fajac I, Clancy JP, Sands D, Minic P, et al. Amikacin liposome inhalation suspension for chronic Pseudomonas aeruginosa infection in cystic fibrosis. J Cyst Fibros. 2019; Available from: https://linkinghub.elsevier.com/retrieve/pii/S1569199319308331

Clancy JP, Dupont L, Konstan MW, Billings J, Fustik S, Goss CH, et al. Phase II studies of nebulised Arikace in CF patients with Pseudomonas aeruginosa infection. Thorax. 2013;68(9):818–25.

McShane PJ, Weers JG, Tarara TE, Haynes A, Durbha P, Miller DP, et al. Ciprofloxacin Dry Powder for Inhalation (ciprofloxacin DPI): Technical design and features of an efficient drug–device combination. Pulm Pharmacol Ther. 2018;50:72–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1094553918300063

Hamblin KA, Armstrong SJ, Barnes KB, Davies C, Wong JP, Blanchard JD, et al. Liposome encapsulation of ciprofloxacin improves protection against highly virulent francisella tularensis strain schu s4. Antimicrob Agents Chemother. 2014;58(6):3053–9.

Cipolla D, Blanchard J, Gonda I. Development of liposomal ciprofloxacin to treat lung infections. Pharmaceutics. 2016;8(1) E6. doi: 10.3390/pharmaceutics8010006.

Halwani M, Yebio B, Suntres ZE, Alipour M, Azghani AO, Omri A. Co-encapsulation of gallium with gentamicin in liposomes enhances antimicrobial activity of gentamicin against Pseudomonas aeruginosa. J Antimicrob Chemother. 2008;62(6):1291–7.

Griesenbach U, Alton EWFW. Recent advances in understanding and managing cystic fibrosis transmembrane conductance regulator dysfunction. F1000Prime Rep. 2015;7(64). doi: 10.12703/P7-64

Descargas

Publicado

2020-06-20

Cómo citar

1.
Guerra Morillo MO, Rabasco Álvarez AMAM, González Rodríguez ML. Fibrosis Quística: tratamiento actual y avances con la nanotecnología. Ars Pharm [Internet]. 20 de junio de 2020 [citado 27 de diciembre de 2024];61(2):81-96. Disponible en: https://revistaseug.ugr.es/index.php/ars/article/view/11358

Número

Sección

Artículos de revisión