Partículas superparamagnéticas ultrapequeñas de óxido de hierro para aplicaciones biomédicas

Autores/as

  • JL ARIAS Departamento de Farmacia y Tecnología Farmacéutica. Facultad de Farmacia. Universidad de Granada, 18071 Granada (Granada). España.
  • M LÓPEZ-VIOTA Departamento de Farmacia y Tecnología Farmacéutica. Facultad de Farmacia. Universidad de Granada, 18071 Granada (Granada). España.
  • MA RUIZ Departamento de Farmacia y Tecnología Farmacéutica. Facultad de Farmacia. Universidad de Granada, 18071 Granada (Granada). España.

Palabras clave:

Aplicaciones Biomédicas, Agentes de Contraste, Caracterización Fisicoquímica, Óxidos de Hierro, Sistemas Transportadores de Fármacos, Vehículos de Fármacos, USPIO

Resumen

Las partículas superparamagnéticas ultrapequeñas de óxido de hierro (USPIO) tienen una enorme utilidad enBiomedicina como agentes de contraste en resonancia magnética de imagen o como sistemas transportadores defármacos, entre otras aplicaciones. La naturaleza del recubrimiento de los núcleos inorgánicos de las partículasUSPIO determina su estabilidad in vitro y su comportamiento in vivo, siendo especialmente importantes sus propiedadesfi sicoquímicas, en concreto el tamaño, la carga superfi cial y la densidad del recubrimiento. Las pequeñasdimensiones de las partículas USPIO hace difícil una caracterización fi sicoquímica completa, la cuál es de sumaimportancia para poder mejorar su estabilidad y comportamiento in vivo. Esta revisión se centra en las técnicasinstrumentales utilizadas en el análisis de los núcleos magnéticos y de sus recubrimientos orgánicos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Corot C, Robert P, Idée JM, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 2006; 58: 1471–1504.

Roch A, Gossuin Y, Muller RN, Gillis P. Superparamagnetic colloid suspensions: Water magnetic relaxation and clustering. J Magn Magn Mater 2005; 293: 532-539.

Reimer P, Tombach B. Hepatic MRI with SPIO, detection and characterization of focal liver lesions. Eur Radiol 1998; 8(7): 1198-1204.

Clément O, Siauve N, Cuénod CA, Frija G. Liver imaging with ferumoxides (feridex): fundamentals, controversies and practical aspects. Topics in Magnetic Reson Imaging 1998; 9(3): 167-182.

Raynal I, Prigent P, Peyramaure S, Najid A, Rebuzzi C, Corot C. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest Radiol 2004; 39(1): 56-63.

Tartaj P, Morales MP, Veintemillas-Verdaguer S, González-Carreño T, Serna CJ. The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D: Appl Phys 2003; 36: R182–R197.

Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005; 26: 3995-4021.

Tartaj P, Morales MP, González-Carreño T, Veintemillas-Verdaguer S, Serna CJ. Advances in magnetic nanoparticles for biotechnology applications. J Magn Magn Mater 2005; 290: 28–34.

Peng Y, Park C, Zhu JG, White RM, Laughlin DE. Characterization of interfacial reactions in magnetite tunnel junctions with transmission electron microscopy. J Appl Phys 2004; 95: 6798-6800.

Miser DE, Shin EJ, Hajaligol MR, Rasouli F. HRTEM characterization of phase changes and the occurrence of maghemite during catalysis by an iron oxide. App. Cat. A: Gen 2004; 258: 7–16.

Brice-Profeta S, Arrio MA, Tronc E, Menguy N, Letard I, Cartier dit Moulin C, Noguès M, Chanéac C, Jolivet JP, Sainctavit P. Magnetic order in γ-Fe2O3 nanoparticles: a XMCD study. J Magn Magn Mat 2005; 288: 354–365.

Di Marco M, Port M, Couvreur P, Dubernet C, Ballirano P, Sadun C. Structural characterization of ultrasmall superparamagnetic iron oxide (USPIO) particles in aqueous suspension by energy dispersive X-ray diffraction (EDXD). J Am Chem Soc 2006; 128: 10054–10059.

Moeser GD, Green WH, Laibinis PE, Linse P, Hatton TA. Structure of polymer-stabilized magnetic fluids: small-angle neutron scattering and mean-field lattice modelling. Langmuir 2004; 20: 5223-5234.

Sadun C, Bucci R, Magrι AL. Structural Analysis of the Solid Amorphous Binuclear Complexes of Iron(III) and Aluminum(III) with Chromium(III)-DTPA Chelator Using Energy Dispersive X-ray Diffraction. J Am Chem Soc

; 124: 3036-3041.

Chatterjee J, Haik Y, Chen CJ. Size dependent magnetic properties of iron oxide nanoparticles. J. Magn Magn Mater 2003; 257: 113–118.

Iglesias O, Labarta A. Role of surface disorder on the magnetic properties and hysteresis of nanoparticles. Physica B 2004; 343: 286–292.

Gaur U, Sahoo SK, De TK. Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system. Int J Pharm 2002; 202:1–10.

Sonvico F, Mornet S, Vasseur S, Dubernet C, Jaillard D, Degrouard J, Hoebeke J, Duguet E, Colombo P, Couvreur P. Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjug Chem 2005; 16:

-1188.

Bjornerud A, Johansson LO, Ahlstrom HK. Pre-clinical results with Clariscan (NC100150 Injection): experience from different disease models. MAGMA 2001; 12: 99-103.

Zhang Y, Kohler N, Zhang M. Functionalisation of magnetic nanoparticles for applications in biomedicine. Biomaterials 2002; 23(7):1553-1561.

Bautista MC, Bomati-Miguel O, Morales MP, Serna CJ, Veintemillas-Verdaguer S. Surface characterisation of dextran-coated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation. J Magn Magn Mater 2005; 293: 20-27.

Bourrinet P, Bengele HH, Bonnemain B, Dencausse A, Idee JM, Jacobs PM, Lewis JM. Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Invest Radiol 2006; 41(3): 313-324.

Mornet S, Portier J, Duguet E. A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran. J Magn Magn Mater 2005; 293: 127–134.

Wapner K, Grundmeier G. Spectroscopic analysis of the interface chemistry of ultra-thin plasma polymer films on iron. Surface & Coatings Technology 2005; 200: 100–103.

Love JC, Estroff LA, Kriebel JK. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 2005; 105: 1103-1169.

Tirrell M, Kokkoli E, Biesalski M. The role of surface science in bioengineered materials. Surface Science 2002; 500: 61–83.

Roger J, Pons JN, Massart R, Halbreich A, Bacri JC. Some biomedical applications of ferrofluids. Eur Phys J AP 1999; 5: 321-325.

Brovelli D, Hähner G. Highly oriented self-assembled alkanephosphate monolayers on tantalum(V) oxide surfaces. Langmuir 1999; 15: 4324-4327.

Sahoo Y, Pizem H, Fried T, Golodnitsky D, Burstein L, Sukenik CN, Markovich G. Alkyl phosphonate/phosphate coating on magnetite nanoparticles: a comparison with fatty acids. Langmuir 2001; 17: 7907-7911.

White MA, Johnson JA, Koberstein JT. 2006. Toward the syntheses of universal ligands for metal oxide surfaces: controlling surface functionality through click chemistry. J Am Chem Soc 2006; 128: 11356-11357.

Auernheimer J, Zukowski D, Dahmen C, Kantlehner M, Enderle A, Goodman SL, Kessler H. Titanium implant materials with improved biocompatibility through coating with phosphonate-anchored cyclic RGD peptides. ChemBioChem 2005; 6(11): 2034-2040.

Persson P, Nilsson N, Sjöberg S. Structure and bonding of orthophosphate ions at the iron oxide–aqueous interface. J Colloid Interf Sci 1996; 177: 263–275.

Nowack B, Stone AT. Adsorption of phosphonates onto the goethite–water interface. J Colloid Interf Sci 1999; 214: 20–30.

Kreller DI, Gibson G, Novak W, vanLoon GW, Horton JH. Competitive adsorption of phosphate and carboxylate with natural organic matter on hydrous iron oxides as investigated by chemical force microscopy. Colloids Surf A 2003; 212: 249-264.

Nooney MG, Murrell TS, Corneille JS, Rusert EI, Hossner LR, Goodman DW. A spectroscopic investigation of phosphate adsorption onto iron oxides. J Vac Sci Technol A 1996; 14: 1357-1361.

Stumm W. Chemistry of the solid-water interface. New York: Wiley & Sons; 1992.

Barja BC, Dos Santos Afonso M. Aminomethylphosphonic acid and glyphosate adsorption onto goethite: a Comparative study. Environ Sci Technol 2005; 39: 585-592.

Joly L, Ybert C, Trizac E. Hydrodynamics within the electric double layer on slipping surfaces. Phys Rev Lett 2004; 93(257805): 1-4.

Xu R. Shear plane and hydrodynamic diameter of microspheres in suspension. Langmuir 1998; 14: 2593-2597.

Hunter RJ. Foundations of Colloid Science, 2nd Ed. Oxford: Clarendon Press; 2001.

Dukhin AS, Ohshima H, Shilov VN, Goetz PJ. Electroacoustics for Concentrated Dispersions. Langmuir 1999; 15(10): 3445-3451.

O´Brien RW, White LR. Electrophoretic mobility of a spherical colloidal particle. J Chem Soc Faraday Trans 1978; 74: 1607-1626.

Ohshima, H. Electrophoresis of soft particles. Adv Colloid Interf Sci 1995; 62:189-235.

Di Marco M, Guilbert I, Port M, Robic C, Couvreur P, Dubernet C. Colloidal stability of ultrasmall superparamagnetic iron oxide (USPIO) particles with different coatings. Inter J Pharm 2006; 331(2): 197-203.

Derjaguin BV, Landau LD. Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim 1941; 14: 633-662.

Vervey EJW, Overbeek JTG. Theory of stability of lyophobic colloids. Amsterdam: Elsevier; 1948.

Janssen JJM, Baltussen JJM, van Gelder AP, Perenboom JAAJ. Kinetics of magnetic flocculation. II: flocculation of coarse particles. J Phys D: Appl Phys 1990; 23: 1455-1460.

Valle-Delgado JJ, Molina-Bolívar JA, Galisteo-González F, Gálvez-Ruiz MJ. Study of the colloidal stability of an amphoteric latex. Colloid Polym Sci 2003; 81: 708–715.

Thode K, Muller RH, Kresse M. Two-time window and multiangle photon correlation spectroscopy size and zeta potential analysis--highly sensitive rapid assay for dispersion stability. J Pharm Sci 2000; 89(10): 1317-1324.

Ortega-Vinuesa JL, Martín-Rodríguez A, Hidalgo-Álvarez R. Colloidal stability of polymer colloids with different interfacial properties: mechanisms. J Colloid Interf Sci 1996; 184: 259–267.

Holthoff H, Egelhaaf SU, Borkovec M, Schurtenberger P, Sticher H. Coagulation rate measurements of colloidal particles by simultaneous static and dynamic light scattering. Langmuir 1996; 12: 5541-5549.

Schudel M, Behrens SH, Holthoff H, Kretzschmar R, Borkovec M. Absolute aggregation rate constants of hematite particles in aqueous suspensions: a comparison of two different surface morphologies. J Colloid Interf Sci 1997; 196: 241-253.

Viota JL, de Vicente J, Durán JDG, Delgado AV. Stabilization of magnetorheological suspensions by polyacrylic acid polymers. J Colloid Interf Sci 2005; 284(2): 527-541.

Descargas

Publicado

2008-06-20

Cómo citar

1.
ARIAS J, LÓPEZ-VIOTA M, RUIZ M. Partículas superparamagnéticas ultrapequeñas de óxido de hierro para aplicaciones biomédicas. Ars Pharm [Internet]. 20 de junio de 2008 [citado 19 de abril de 2024];49(2):101-1. Disponible en: https://revistaseug.ugr.es/index.php/ars/article/view/5767

Número

Sección

Artículos de revisión