Neural representations
A Mechanistic Challenge to Suárez's Inferential Conception
DOI:
https://doi.org/10.30827/trif.33614Keywords:
neural representation, mechanistic explanation, computational models, inferential account, cognitive neuroscience, artificial intelligence, Mauricio SuárezAbstract
This article examines Mauricio Suárez's inferentialist account of scientific representation in light of recent advances in neuroscience and artificial intelligence (NeuroAI). While it offers valuable pragmatic insights, I argue it is insufficient to capture the dynamic, computational, and biological nature of neural representations. Drawing on the mechanistic, functionalist, and representationalist (MFR) approach and empirical findings, I maintain they are not mere abstract entities but are embodied in the physical and functional properties of neural systems. I challenge arguments against the necessity and sufficiency of similarity and isomorphism, highlighting computational transformations, functional roles, and the directionality of processing that shape content. The Hodgkin–Huxley model and neurocomputationalism employing artificial neural networks support the MFR and challenge Suárez's inferentialism. I conclude that a mechanistic and computational understanding provides a more comprehensive and empirically grounded framework for modelling and representation in the mind sciences.
Downloads
References
Acosta, F., Conwell, C., Sanborn, S., Klindt, D., & Miolane, N. (2023). Relating representational geometry to cortical geometry in the visual cortex. NeurIPS 2023 Workshop on Unifying Representations in Neural Models.
Artiga, M. (2023). Understanding structural representations. The British Journal of Philosophy of Science. https://doi.org/10.1086/728714 DOI: https://doi.org/10.1086/728714
Baker, B., Lansdell, B., & Kording, K. P. (2022). Three aspects of representation in neuroscience. Trends in Cognitive Sciences, 26, 942–958. https://doi.org/10.1016/j.tics.2022.08.014 DOI: https://doi.org/10.1016/j.tics.2022.08.014
Bakermans, J. J., Warren, J., Whittington, J. C., & Behrens, T. E. (2025). Constructing future behavior in the hippocampal formation through composition and replay. Nature Neuroscience, 1-12. https://doi.org/10.1038/s41593-025-01908-3 DOI: https://doi.org/10.1038/s41593-025-01908-3
Benson, N., & Winawer, J. (2018). Bayesian analysis of retinotopic maps. eLife, 7. https://doi.org/10.7554/eLife.40224 DOI: https://doi.org/10.7554/eLife.40224
Carrillo, N., & Knuuttila, T. (2023). Mechanisms and the problem of abstract models. European Journal for Philosophy of Science, 13(3), 1-19. https://doi.org/10.1007/s13194-023-00515-y DOI: https://doi.org/10.1007/s13194-023-00530-z
Coelho Mollo, D., & Vernazzani, A. (2023). The formats of cognitive representation: A computational account. Philosophy of Science, 1-20. https://doi.org/10.1017/psa.2023.123 DOI: https://doi.org/10.31234/osf.io/7vh5z
Courellis, H. S., Minxha, J., Cardenas, A. R., Smith, L. M., Holliday, A. M., Johnson, E. L., Wright, M. J., Aum, D. J., Braud, J., Salma, A., Pauli, W. M., Mamelak, A. N., & Rutishauser, U. (2024). Abstract representations emerge in human hippocampal neurons during inference. Nature, 1-19. https://doi.org/10.1038/s41586-024-07799-x DOI: https://doi.org/10.1038/s41586-024-07799-x
Frigg, R., & Nguyen, J. (2017). Models and representation. In L. Magnani & T. Bertolotti (Eds.), Springer Handbook of Model-Based Science (pp. 49-102). Springer. DOI: https://doi.org/10.1007/978-3-319-30526-4_3
Hodgkin, A. L., & Huxley, A. F. (1939). Action potentials recorded from inside a nerve fibre. Nature, 144(3651), 710–711. https://doi.org/10.1038/144710a0 DOI: https://doi.org/10.1038/144710a0
Hodgkin, A. L., Huxley, A. F., & Katz, B. (1952). Measurement of current voltage relations in the membrane of the giant axon of Loligo. The Journal of Physiology, 116(4), 424–448. https://doi.org/10.1113/jphysiol.1952.sp004716 DOI: https://doi.org/10.1113/jphysiol.1952.sp004716
Johnston, W. J., & Fusi, S. (2023). Abstract representations emerge naturally in neural networks trained to perform multiple tasks. Nature Communications, 14, 1040. https://doi.org/10.1038/s41467-023-36583-0 DOI: https://doi.org/10.1038/s41467-023-36583-0
Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11), 4302–4311. https://doi.org/10.1523/JNEUROSCI.17-11-04302.1997 DOI: https://doi.org/10.1523/JNEUROSCI.17-11-04302.1997
Kar, K., & DiCarlo, J. J. (2023). The quest for an integrated set of neural mechanisms underlying object recognition in primates. arXiv. https://doi.org/10.48550/arXiv.2312.05956 DOI: https://doi.org/10.1146/annurev-vision-112823-030616
Langers, D. R., & van Dijk, P. (2011). Mapping the tonotopic organization in human auditory cortex with minimally salient acoustic stimulation. Cerebral Cortex, 22(9), 2024-2038. https://doi.org/10.1093/cercor/bhr282 DOI: https://doi.org/10.1093/cercor/bhr282
Lewis, J. E., & Kristan, W. B., Jr. (1998). Representation of touch location by a population of leech sensory neurons. Journal of Neurophysiology, 80(5), 2584–2592. https://doi.org/10.1152/jn.1998.80.5.2584 DOI: https://doi.org/10.1152/jn.1998.80.5.2584
Liu, X., Ramirez, S., Pang, P. T., Puryear, C. B., Govindarajan, A., Deisseroth, K., & Tonegawa, S. (2012). Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature, 484(7394), 381-385. https://doi.org/10.1038/nature11028 DOI: https://doi.org/10.1038/nature11028
Matsumoto, M., & Komatsu, H. (2005). Neural responses in the macaque V1 to bar stimuli with various lengths presented on the blind spot. Journal of Neurophysiology, 93(5), 2374–2387. https://doi.org/10.1152/jn.00811.2004 DOI: https://doi.org/10.1152/jn.00811.2004
Moser, E., Kropff, E., & Moser, M. (2008). Place cells, grid cells, and the brain's spatial representation system. Annual Review of Neuroscience, 31, 69-89. https://doi.org/10.1146/annurev.neuro.31.061307.090723 DOI: https://doi.org/10.1146/annurev.neuro.31.061307.090723
Piccinini, G. (2020). Neurocognitive Mechanisms: Explaining Biological Cognition. Oxford University Press. DOI: https://doi.org/10.1093/oso/9780198866282.001.0001
Poldrack, R. A. (2021). The physics of representation. Synthese, 199, 1307–1325. https://doi.org/10.1007/s11229-020-02793-y DOI: https://doi.org/10.1007/s11229-020-02793-y
Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005). Invariant visual representation by single neurons in the human brain. Nature, 435(7045), 1102-1107. https://doi.org/10.1038/nature03687 DOI: https://doi.org/10.1038/nature03687
Ramsey, W. M. (2007). Representation Reconsidered. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511597954
Sanborn, S., Shewmake, C., Olshausen, B., & Hillar, C. (2023). Bispectral neural networks. ICLR 2023.
Shea, N. (2013). Naturalising representational content. Philosophy Compass, 8(5), 496–509. https://doi.org/10.1111/phc3.12033 DOI: https://doi.org/10.1111/phc3.12033
Shea, N. (2018). Representation In Cognitive Science. Oxford University Press. DOI: https://doi.org/10.1093/oso/9780198812883.001.0001
Shi, Y., Bi, D., Hesse, J. K., Lanfranchi, F. F., Chen, S., & Tsao, D. Y. (2023). Rapid, concerted switching of the neural code in inferotemporal cortex. bioRxiv. https://doi.org/10.1101/2023.12.06.570341 DOI: https://doi.org/10.1101/2023.12.06.570341
Spillmann, L. (2014). Receptive fields of visual neurons: The early years. Perception, 43(11), 1145–1176. https://doi.org/10.1068/p7721 DOI: https://doi.org/10.1068/p7721
Suárez, M. (2003). Scientific representation: Against similarity and isomorphism. International Studies in the Philosophy of Science, 17(3), 225-244. https://doi.org/10.1080/0269859032000169442 DOI: https://doi.org/10.1080/0269859032000169442
Suárez, M. (2024). Inference and Representation: A study In Modeling Science. University of Chicago Press. DOI: https://doi.org/10.7208/chicago/9780226830032.001.0001
Taube, J. S., Muller, R. U., & Ranck, J. B., Jr. (1990). Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. Journal of Neuroscience, 10(2), 420-435. https://doi.org/10.1523/JNEUROSCI.10-02-00420.1990 DOI: https://doi.org/10.1523/JNEUROSCI.10-02-00420.1990
Tootell, R. B., Switkes, E., Silverman, M. S., & Hamilton, S. L. (1988). Functional anatomy of macaque striate cortex. II. Retinotopic organization. Journal of Neuroscience, 8(5), 1531–1568. https://doi.org/10.1523/JNEUROSCI.08-05-01531.1988 DOI: https://doi.org/10.1523/JNEUROSCI.08-05-01531.1988
Vollan, A. Z., Gardner, R. J., & Moser, E. I. (2025). Left–right-alternating theta sweeps in entorhinal–hippocampal maps of space. Nature, 639, 995–1005 https://doi.org/10.1038/s41586-024-08527-1 DOI: https://doi.org/10.1038/s41586-024-08527-1
Yamins, D., & DiCarlo, J. (2016). Using goal-driven deep learning models to understand sensory cortex. Nature Neuroscience, 19, 356–365. https://doi.org/10.1038/nn.4244 DOI: https://doi.org/10.1038/nn.4244
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Aníbal M. Astobiza

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.