Predictive Architectures Cannot Be Modular

Authors

DOI:

https://doi.org/10.30827/trif.32705

Keywords:

Predictive Architectures, Modular Architectures, Continuity Claim, Non-isolation Claim, Cognitive Penetrability, Markov Blankets

Abstract

Drayson (2017) explores the relationship between predictive and modular architectures of the mind and concludes that predictive architectures must exhibit some kind of modularity. To do so, Drayson discusses two requirements of predictive architectures that seem to conflict with modular architectures: the continuity claim, the idea that cognition and perception rest on a continuum, and the non-isolation claim, the idea that no brain processes are informationally isolated. Although these features seem to repel modular architectures, Drayson finds reasons for reconciliation. In this paper, I explain such reasons and provide difficulties in Drayson’s argumentation. I conclude that there is no place for reconciliations.

Downloads

References

BALCETIS, E. and DUNNING, D. (2010), “Wishful Seeing: More Desired Objects Are Seen as Closer”; Psychological Science, 21, pp. 147-52. DOI: https://doi.org/10.1177/0956797609356283

BANERJEE, P., CHATTERJEE, P. and SINHA, J. (2012), “Is It Light or Dark? Recalling Moral Behaviour Changes Perception of Brightness”; Psychological Science, 23, pp. 407-409. DOI: https://doi.org/10.1177/0956797611432497

BARRETT, H.B. and KURZBAN, R. (2006), “Modularity in Cognition: Framing the Debate"; Psychological Review, 113(3), pp. 628-647. DOI: https://doi.org/10.1037/0033-295X.113.3.628

BECHTEL, W. and ABRAHAMSEN, A. (1991), Connectionism and the Mind: An Introduction to Parallel Processing in Networks; Oxford: Blackwell.

BENI, M. D. (2022), “A Tale of Two Architectures: Free Energy, Its Models, and Modularity"; Consciousness and Cognition, 98, 103257. DOI: https://doi.org/10.1016/j.concog.2021.103257

BLOCK, N. (2023), The Border Between Seeing and Thinking; Oxford University Press. DOI: https://doi.org/10.1093/oso/9780197622223.001.0001

BURNSTON, D. and COHEN, J. (2015), “Perceptual Integration, Modularity, and Cognitive Penetration” In A. Raftopoulos and J. Zeimbekis (Eds.), Cognitive Influences on Perception: Implications for Philosophy of Mind, Epistemology, and Philosophy of Action; Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780198738916.003.0005

CARRUTHERS, P. (2006), The Architecture of the Mind; Oxford: Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780199207077.001.0001

CLARK, A. (2013), “Whatever Next? Predictive Brains, Situated Agents, and the Future of Cognitive Science”; Behavioral and Brain Sciences, 36(3), pp. 181-204. DOI: https://doi.org/10.1017/S0140525X12000477

––– Surfing Uncertainty: Prediction, Action, and the Embodied Mind; New York: Oxford University Press.

COLTHEART, M. (1999), “Modularity and Cognition"; Trends in Cognitive Science, 3, pp. 115-20. DOI: https://doi.org/10.1016/S1364-6613(99)01289-9

DEWHURST, J. (2017), “Folk Psychology and the Bayesian Brain”; in T. Metzinger and W. Wiese (Eds.), Philosophy and Predictive Processing; Frankfurt am Main: MIND Group.

DRAYSON, Z. (2017), “Modularity and the Predictive Mind” In T. Metzinger and W. Wiese (Eds.), Philosophy and Predictive Processing; Frankfurt am Main: MIND Group.

EELLS, E. and SOBER, E. (1983), “Probabilistic Causality and the Question of Transitivity”; Philosophy of Science, 50, pp. 35-57. DOI: https://doi.org/10.1086/289089

FIRESTONE, C. and SCHOLL, B. J. (2016), “Cognition does not Affect Perception: Evaluating the Evidence for ‘Top-Down’ Effects”; Behavioural and Brain Sciences, 39, pp. 1-77. DOI: https://doi.org/10.1017/S0140525X15000965

FODOR, J. A. (1983), The Modularity of Mind; Cambridge, MA: MIT Press. DOI: https://doi.org/10.7551/mitpress/4737.001.0001

––– The Mind Doesn’t Work That Way; Cambridge, MA: MIT Press.

FODOR, J. A. and PYLYSHYN, Z. W. (1988), “Connectionism and Cognitive Architecture: A Critical Analysis”; Cognition, 28, pp. 3-71. DOI: https://doi.org/10.1016/0010-0277(88)90031-5

FRISTON, K. J. (2010), The Free-Energy Principle: A Unified Brain Theory?; Nature Reviews Neuroscience, 11(2), pp. 127–38. DOI: https://doi.org/10.1038/nrn2787

––– (2011), “Functional and Effective Connectivity: a Review”; Brain Connectivity, 1(1), pp. 13-36. DOI: https://doi.org/10.1089/brain.2011.0008

FRISTON, K. J. (2013), “Life As We Know It”; Journal of The Royal Society: Interface, 10(86), 20130475. DOI: https://doi.org/10.1098/rsif.2013.0475

FRISTON, K. J. and PRICE, C.J. (2001), “Dynamic Representations and Generative Models of Brain Function”; Brain Research Bulletin, 54, pp. 275–285. DOI: https://doi.org/10.1016/S0361-9230(00)00436-6

GALLAGHER, S., HUTTO, D. and HIPÓLITO, I. (2022), “Predictive Processing and Some Disillusions about Illusions”; Review of Philosophy and Psychology, 13, pp. 999-1017. https://doi.org/10.1007/s13164-021-00588-9 DOI: https://doi.org/10.1007/s13164-021-00588-9

GREEN, E. J. (2023), “The Perception-Cognition Border: Architecture or Format?”; in B. P. McLaughlin and J. Cohen (eds.), Contemporary Debates in Philosophy of Mind; Oxford: Blackwell. DOI: https://doi.org/10.1002/9781394259847.ch26

HARBER, K. D., YEUNG, D. and IACOVELLI, A. (2011), “Psychosocial Resources, Threat, and the Perception of Distance and Height: Support for the Resources and Perception Model”; Emotion, 11, pp. 1080-90. DOI: https://doi.org/10.1037/a0023995

HIPÓLITO, I. and KIRCHHOFF, M.D. (2019), “The Predictive Brain: A Modular View of Brain and Cognitive Function?”; Preprints.org, 2019110111. DOI: https://doi.org/10.20944/preprints201911.0111.v1

––– (2023), “Breaking Boundaries: The Bayesian Brain Hypothesis for Perception and Prediction”; Consciousness and Cognition, 111, 103510. DOI: https://doi.org/10.1016/j.concog.2023.103510

HIPÓLITO, I., RAMSTEAD, M. J., CONVERTINO, L., BHAT, A., FRISTON, K. and PARR, T. (2021), “Markov Blankets in the Brain”; Neuroscience & Biobehavioral Reviews, 125, pp. 88-97. DOI: https://doi.org/10.1016/j.neubiorev.2021.02.003

HOHWY, J. (2013), The Predictive Mind; Oxford: Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780199682737.001.0001

––– (2017), “Priors in Perception: Top-Down Modulation, Bayesian Perceptual Learning Rate, and Prediction Error Minimization”; Consciousness and Cognition, 47, pp. 75-85. DOI: https://doi.org/10.1016/j.concog.2016.09.004

KIEFER, A. (2017), “Literal Perceptual Inference”; in T. Metzinger and W. Wiese (Eds.), Philosophy of Predictive Processing; Frankfurt am Main: MIND-Group.

LEE, T.S. and MUMFORD, D. (2003), “Hierarchical Bayesian Inference in the Visual Cortex”; Journal of Optical Society of America, 20(7), 1434-1448. DOI: https://doi.org/10.1364/JOSAA.20.001434

LEVIN, D. T. and BANAJI, M. R. (2006), “Distortions in the Perceived Lightness of Faces: The Role of Race Categories”; Journal of Experimental Psychology: General, 135, pp. 501-12. DOI: https://doi.org/10.1037/0096-3445.135.4.501

LUPYAN, G. (2015), “Cognitive Penetrability of Perception in the Age of Prediction: Predictive Systems Are Penetrable Systems”; Review of Philosophy and Psychology, 6, pp. 547-569. DOI: https://doi.org/10.1007/s13164-015-0253-4

MACPHERSON, F. (2017), “The Relationship Between Cognitive Penetration and Predictive Coding”; Consciousness and Cognition, 47, pp. 6-16. DOI: https://doi.org/10.1016/j.concog.2016.04.001

MCCAULEY, R.N. and HENRICH, J. (2006), “Susceptibility to the Muller-Lyer Illusion, Theory-Neutral Observation, and the Diachronic Penetrability of the Visual Input System”; Philosophical Psychology, 19(1), pp. 79-101. DOI: https://doi.org/10.1080/09515080500462347

MCCLELLAND, J. L. (2013), “Integrating Probabilistic Models of Perception and Interactive Neural Networks: A Historical and Tutorial Review”; Frontiers in Psychology, 4, p. 503. DOI: https://doi.org/10.3389/fpsyg.2013.00503

OGILVIE, R. and CARRUTHERS, P. (2016), “Opening Up Vision: The Case Against Encapsulation”; Review of Philosophy and Psychology, 7, pp. 721–742. DOI: https://doi.org/10.1007/s13164-015-0294-8

PANICHELLO, M. F., CHEUNG, O. and BAR, M. (2013), “Predictive Feedback and Conscious Visual Experience”; Frontiers in Psychology, 3, pp. 620. DOI: https://doi.org/10.3389/fpsyg.2012.00620

PRINZ, J. (2006), “Is the Mind Really Modular?”; in R. Stainton (Ed.), Contemporary Debates in Cognitive Science (pp. 22-36); Oxford: Blackwell.

PYLYSHYN, Z. W. (1999), “Is Vision Continuous with Cognition? The Case for Cognitive Impenetrability of Visual Perception”; Behavioural and Brain Sciences, 22, pp. 341-365. DOI: https://doi.org/10.1017/S0140525X99002022

QUILTY-DUNN, J. (2020), “Perceptual Pluralism”; Noûs, 54(4), pp. 807-838. DOI: https://doi.org/10.1111/nous.12285

RAFTOPOULOS, A. (2009), Cognition and Perception: How Do Psychology and Neural Science Inform Philosophy? The MIT Press. DOI: https://doi.org/10.7551/mitpress/8297.001.0001

RAO, R.P.N. and BALLARD, D.H. (1999), “Predictive Coding in The Visual Cortex: A Functional Interpretation of Some Extra-Classical Receptive-Field Effects”; Nature Neuroscience, 2(1), pp. 79-87. DOI: https://doi.org/10.1038/4580

ROCHE, W. A. (2012), “A Weaker Condition for Transitivity in Probabilistic Support”; European Journal for Philosophy of Science, 2(1), pp. 11-118. DOI: https://doi.org/10.1007/s13194-011-0033-7

RUDEL, R.G. and TEUBER, H. L. (1963), “Decrement of Visual and Haptic Müller-Lyer Illusion on Repeated Trials: A Study of Crossmodal Transfer”; Quarterly Journal of Experimental Psychology, 15(2), pp. 125-131. DOI: https://doi.org/10.1080/17470216308416563

SHOGENJI, T. (2003), “A Condition for Transitivity in Probabilistic Support”; British Journal for the Philosophy of Science, 54, pp. 613-616. DOI: https://doi.org/10.1093/bjps/54.4.613

SIEGEL, S. (2012), “Cognitive Penetrability and Perceptual Justification”; Noûs, 46, pp. 201-22. DOI: https://doi.org/10.1111/j.1468-0068.2010.00786.x

SIMS, A. (2016), “A Problem of Scope for the Free Energy Principle As a Theory of Cognition”; Philosophical Psychology, 29, pp. 967-980. DOI: https://doi.org/10.1080/09515089.2016.1200024

––– (2017), “The Problems with Prediction. The Dark Room Problem and The Scope Dispute”; In T. Metzinger and W. Wiese (Eds.), Philosophy and Predictive Processing; Frankfurt am Main: MIND Group.

SNIJDERS, T. (2012), Transitivity and Triads; University of Oxford. Available at http://www.stats.ox.ac.uk/~snijders/Trans_Triads_ha.pdf.

SPERBER, D. (2001), “Defending Massive Modularity”; in E. Dupoux (Ed.), Language, Brain and Cognitive Development: Essays in Honor of Jacques Mehler; Cambridge, MA: MIT Press. DOI: https://doi.org/10.7551/mitpress/4108.003.0008

SPOHN, W. (2009), “The Difficulties with Indirect Causation”; Causation, Coherence and Concepts: A Collection of Essays (pp. 57–65); Springer. DOI: https://doi.org/10.1007/978-1-4020-5474-7

STEFANUCCI, J. K. and GEUSS, M. N. (2009), “Big People, Little World: The Body Influences Size Perception”; Perception, 38, pp. 1782–95. DOI: https://doi.org/10.1068/p6437

STERZER, P., FRITH, C. and PETROVIC, P. (2008), “Believing Is Seeing: Expectations Alter Visual Awareness”; Current Biology, 18(16), R697–98. DOI: https://doi.org/10.1016/j.cub.2008.06.021

STOKES, D. and BERGERON, V. (2015), “Modular Architectures and Informational Encapsulation: A Dilemma”; European Journal for Philosophy of Science, 5(3), pp. 315-338. DOI: https://doi.org/10.1007/s13194-015-0107-z

Downloads

Published

2024-12-31

How to Cite

Cermeño-Aínsa, S. (2024). Predictive Architectures Cannot Be Modular. Teorema. International Journal of Philosophy, 43(3), 39–62. https://doi.org/10.30827/trif.32705

Issue

Section

Articles