Neural representations

A Mechanistic Challenge to Suárez's Inferential Conception

Autores/as

DOI:

https://doi.org/10.30827/trif.33614

Palabras clave:

representación neuronal, explicación mecanicista, modelos computacionales, enfoque inferencial, neurociencia cognitiva, inteligencia artificial, Mauricio Suárez
Agencias: EMERGIA, Consejería de Universidad, Investigación e Innovación de la Junta de Andalucía.

Resumen

Este artículo examina la explicación inferencialista de la representación científica de Mauricio Suárez a la luz de avances recientes en neurociencia e inteligencia artificial (NeuroAI). Aunque aporta valiosas perspectivas pragmáticas, sostengo que es insuficiente para captar la naturaleza dinámica, computacional y biológica de las representaciones neuronales. Apoyado en el enfoque mecanicista, funcionalista y representacionalista (MFR) y en hallazgos empíricos, sostengo que no son meras entidades abstractas, sino que están encarnadas en propiedades físicas y funcionales de los sistemas neuronales. Cuestiono argumentos contra la necesidad y suficiencia de similitud e isomorfismo, destacando transformaciones computacionales, roles funcionales y direccionalidad del procesamiento que configuran contenido. El modelo Hodgkin-Huxley y el neurocomputacionalismo con redes neuronales artificiales apoyan el MFR y desafían el inferencialismo de Suárez. Concluyo que una comprensión mecanicista y computacional ofrece un marco más completo y empírico para la modelización y la representación en las ciencias de la mente.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Acosta, F., Conwell, C., Sanborn, S., Klindt, D., & Miolane, N. (2023). Relating representational geometry to cortical geometry in the visual cortex. NeurIPS 2023 Workshop on Unifying Representations in Neural Models.

Artiga, M. (2023). Understanding structural representations. The British Journal of Philosophy of Science. https://doi.org/10.1086/728714 DOI: https://doi.org/10.1086/728714

Baker, B., Lansdell, B., & Kording, K. P. (2022). Three aspects of representation in neuroscience. Trends in Cognitive Sciences, 26, 942–958. https://doi.org/10.1016/j.tics.2022.08.014 DOI: https://doi.org/10.1016/j.tics.2022.08.014

Bakermans, J. J., Warren, J., Whittington, J. C., & Behrens, T. E. (2025). Constructing future behavior in the hippocampal formation through composition and replay. Nature Neuroscience, 1-12. https://doi.org/10.1038/s41593-025-01908-3 DOI: https://doi.org/10.1038/s41593-025-01908-3

Benson, N., & Winawer, J. (2018). Bayesian analysis of retinotopic maps. eLife, 7. https://doi.org/10.7554/eLife.40224 DOI: https://doi.org/10.7554/eLife.40224

Carrillo, N., & Knuuttila, T. (2023). Mechanisms and the problem of abstract models. European Journal for Philosophy of Science, 13(3), 1-19. https://doi.org/10.1007/s13194-023-00515-y DOI: https://doi.org/10.1007/s13194-023-00530-z

Coelho Mollo, D., & Vernazzani, A. (2023). The formats of cognitive representation: A computational account. Philosophy of Science, 1-20. https://doi.org/10.1017/psa.2023.123 DOI: https://doi.org/10.31234/osf.io/7vh5z

Courellis, H. S., Minxha, J., Cardenas, A. R., Smith, L. M., Holliday, A. M., Johnson, E. L., Wright, M. J., Aum, D. J., Braud, J., Salma, A., Pauli, W. M., Mamelak, A. N., & Rutishauser, U. (2024). Abstract representations emerge in human hippocampal neurons during inference. Nature, 1-19. https://doi.org/10.1038/s41586-024-07799-x DOI: https://doi.org/10.1038/s41586-024-07799-x

Frigg, R., & Nguyen, J. (2017). Models and representation. In L. Magnani & T. Bertolotti (Eds.), Springer Handbook of Model-Based Science (pp. 49-102). Springer. DOI: https://doi.org/10.1007/978-3-319-30526-4_3

Hodgkin, A. L., & Huxley, A. F. (1939). Action potentials recorded from inside a nerve fibre. Nature, 144(3651), 710–711. https://doi.org/10.1038/144710a0 DOI: https://doi.org/10.1038/144710a0

Hodgkin, A. L., Huxley, A. F., & Katz, B. (1952). Measurement of current voltage relations in the membrane of the giant axon of Loligo. The Journal of Physiology, 116(4), 424–448. https://doi.org/10.1113/jphysiol.1952.sp004716 DOI: https://doi.org/10.1113/jphysiol.1952.sp004716

Johnston, W. J., & Fusi, S. (2023). Abstract representations emerge naturally in neural networks trained to perform multiple tasks. Nature Communications, 14, 1040. https://doi.org/10.1038/s41467-023-36583-0 DOI: https://doi.org/10.1038/s41467-023-36583-0

Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11), 4302–4311. https://doi.org/10.1523/JNEUROSCI.17-11-04302.1997 DOI: https://doi.org/10.1523/JNEUROSCI.17-11-04302.1997

Kar, K., & DiCarlo, J. J. (2023). The quest for an integrated set of neural mechanisms underlying object recognition in primates. arXiv. https://doi.org/10.48550/arXiv.2312.05956 DOI: https://doi.org/10.1146/annurev-vision-112823-030616

Langers, D. R., & van Dijk, P. (2011). Mapping the tonotopic organization in human auditory cortex with minimally salient acoustic stimulation. Cerebral Cortex, 22(9), 2024-2038. https://doi.org/10.1093/cercor/bhr282 DOI: https://doi.org/10.1093/cercor/bhr282

Lewis, J. E., & Kristan, W. B., Jr. (1998). Representation of touch location by a population of leech sensory neurons. Journal of Neurophysiology, 80(5), 2584–2592. https://doi.org/10.1152/jn.1998.80.5.2584 DOI: https://doi.org/10.1152/jn.1998.80.5.2584

Liu, X., Ramirez, S., Pang, P. T., Puryear, C. B., Govindarajan, A., Deisseroth, K., & Tonegawa, S. (2012). Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature, 484(7394), 381-385. https://doi.org/10.1038/nature11028 DOI: https://doi.org/10.1038/nature11028

Matsumoto, M., & Komatsu, H. (2005). Neural responses in the macaque V1 to bar stimuli with various lengths presented on the blind spot. Journal of Neurophysiology, 93(5), 2374–2387. https://doi.org/10.1152/jn.00811.2004 DOI: https://doi.org/10.1152/jn.00811.2004

Moser, E., Kropff, E., & Moser, M. (2008). Place cells, grid cells, and the brain's spatial representation system. Annual Review of Neuroscience, 31, 69-89. https://doi.org/10.1146/annurev.neuro.31.061307.090723 DOI: https://doi.org/10.1146/annurev.neuro.31.061307.090723

Piccinini, G. (2020). Neurocognitive Mechanisms: Explaining Biological Cognition. Oxford University Press. DOI: https://doi.org/10.1093/oso/9780198866282.001.0001

Poldrack, R. A. (2021). The physics of representation. Synthese, 199, 1307–1325. https://doi.org/10.1007/s11229-020-02793-y DOI: https://doi.org/10.1007/s11229-020-02793-y

Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005). Invariant visual representation by single neurons in the human brain. Nature, 435(7045), 1102-1107. https://doi.org/10.1038/nature03687 DOI: https://doi.org/10.1038/nature03687

Ramsey, W. M. (2007). Representation Reconsidered. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511597954

Sanborn, S., Shewmake, C., Olshausen, B., & Hillar, C. (2023). Bispectral neural networks. ICLR 2023.

Shea, N. (2013). Naturalising representational content. Philosophy Compass, 8(5), 496–509. https://doi.org/10.1111/phc3.12033 DOI: https://doi.org/10.1111/phc3.12033

Shea, N. (2018). Representation In Cognitive Science. Oxford University Press. DOI: https://doi.org/10.1093/oso/9780198812883.001.0001

Shi, Y., Bi, D., Hesse, J. K., Lanfranchi, F. F., Chen, S., & Tsao, D. Y. (2023). Rapid, concerted switching of the neural code in inferotemporal cortex. bioRxiv. https://doi.org/10.1101/2023.12.06.570341 DOI: https://doi.org/10.1101/2023.12.06.570341

Spillmann, L. (2014). Receptive fields of visual neurons: The early years. Perception, 43(11), 1145–1176. https://doi.org/10.1068/p7721 DOI: https://doi.org/10.1068/p7721

Suárez, M. (2003). Scientific representation: Against similarity and isomorphism. International Studies in the Philosophy of Science, 17(3), 225-244. https://doi.org/10.1080/0269859032000169442 DOI: https://doi.org/10.1080/0269859032000169442

Suárez, M. (2024). Inference and Representation: A study In Modeling Science. University of Chicago Press. DOI: https://doi.org/10.7208/chicago/9780226830032.001.0001

Taube, J. S., Muller, R. U., & Ranck, J. B., Jr. (1990). Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. Journal of Neuroscience, 10(2), 420-435. https://doi.org/10.1523/JNEUROSCI.10-02-00420.1990 DOI: https://doi.org/10.1523/JNEUROSCI.10-02-00420.1990

Tootell, R. B., Switkes, E., Silverman, M. S., & Hamilton, S. L. (1988). Functional anatomy of macaque striate cortex. II. Retinotopic organization. Journal of Neuroscience, 8(5), 1531–1568. https://doi.org/10.1523/JNEUROSCI.08-05-01531.1988 DOI: https://doi.org/10.1523/JNEUROSCI.08-05-01531.1988

Vollan, A. Z., Gardner, R. J., & Moser, E. I. (2025). Left–right-alternating theta sweeps in entorhinal–hippocampal maps of space. Nature, 639, 995–1005 https://doi.org/10.1038/s41586-024-08527-1 DOI: https://doi.org/10.1038/s41586-024-08527-1

Yamins, D., & DiCarlo, J. (2016). Using goal-driven deep learning models to understand sensory cortex. Nature Neuroscience, 19, 356–365. https://doi.org/10.1038/nn.4244 DOI: https://doi.org/10.1038/nn.4244

Descargas

Publicado

2025-07-23

Cómo citar

M. Astobiza, A. (2025). Neural representations: A Mechanistic Challenge to Suárez’s Inferential Conception. Teorema. Revista Internacional De Filosofía, 44(1). https://doi.org/10.30827/trif.33614

Número

Sección

Artículos