Fases del razonamiento inductivo que presentan profesores de matemáticas al resolver un problema de generalización
DOI:
https://doi.org/10.30827/pna.v14i2.9118Palabras clave:
Generalización, Patrón Cuadrático, Profesores de matemáticas, Razonamiento inductivo, Resolución de problemasResumen
Se reportan seis fases del razonamiento inductivo que presentaron 19 profesores de matemáticas de secundaria al resolver un problema de generalización de un patrón cuadrático. Los datos se recolectaron mediante sus respuestas escritas y entrevistas. El análisis se realizó con base en el modelo de Cañadas y Castro (2007). Se encontró que, para generalizar de manera correcta, no basta con reconocer las regularidades en varios casos particulares, sino que se precisa de asociar esas regularidades con estructuras matemáticas que describan el patrón de manera general, y se detectaron dificultades en algunas fases que impidieron a los profesores llegar a generalizar.
Inductive reasoning stages presented by mathematics teachers when solving a generalization problem
This investigation reports six inductive reasoning stages presented by nineteen middle school mathematics teachers when solving a generalization problem of a quadratic pattern. The data was collected through their written responses and interviews. The analysis was performed based on the model of Cañadas and Castro (2007). It was found that the correct generalization not only needed the recognition of regularities in some particular cases, but an accurate association between those regularities and the mathematical structures that describe the pattern in a general way. Furthermore, several difficulties that prevented the teachers from achieving a generalization were detected.
Descargas
Citas
Alajmi, A. H. (2016). Algebraic Generalization Strategies Used by Kuwaiti Pre-service Teachers. International Journal of Science and Mathematics Education, 14(8), 1517–1534. https://doi.org/10.1007/s10763-015-9657-y
Arslan, C., Göcmencelebi, S. I., & Tapan, M. S. (2009). Learning and reasoning styles of pre service teachers’: inductive or deductive reasoning on science and mathematics related to their learning style. Procedia - Social and Behavioral Sciences, 1(1), 2460–2465. https://doi.org/10.1016/j.sbspro.2009.01.432
Association of Mathematics Teacher Educators (2017). Standards for preparing teachers of mathematics. Recuperado el 18 de mayo de 2017, de https://amte.net/standards.
Bills, L. y Rowland, T. (1999). Examples, generalisation and proof. Advances in Mathematics Education, 1(1), 103-116. https://doi.org/10.1080/14794809909461549
Cañadas, M. C., & Castro, E. (2007). A proposal of categorisation for analysing inductive reasoning. Pna, 1(2), 67–78. https://doi.org/10.1227/01.NEU.0000032542.40308.65
Cañadas, M. C., Castro, E. y Castro, E. (2008). Patrones, generalización y estrategias inductivas de estudiantes de 3° y 4° de educación secundaria obligatoria en el problema de las baldosas. PNA, 2(3), 137–151.
Cañadas, M. C., Castro, E., & Castro, E. (2009). Utilización de un modelo para describir el razonamiento inductivo de los estudiantes en la resolución de problemas. Electronic Journal of Research in Educational Psychology, 7(1), 261–278.
Cañadas, M. C. y Castro, E. (2013). Análisis didáctico en una investigación sobre razonamiento inductivo. En L. Rico, J. L. Lupiáñez y M. Molina (Eds.). Análisis Didáctico en Educación Matemática. Metodología de Investigación, Formación de profesores e Innovación Curricular (pp. 333-348). Granada: Editorial Comares.
Cañadas, M. C., Deulofeu, J., Figueiras, L., Reid, D. & Yevdokimov, O. (2007). The conjecturing process: Perspectives in theory and implications in practice. Journal of Teaching and Learning, 5(1), 55-72.
Castro, E., Cañadas, M. C., y Molina, M. (2010). El Razonamiento Inductivo como Generador de Conocimiento Matemático. UNO, 54, 55–67. https://doi.org/10.1017/CBO9781107415324.004
Davydov, V. (1990). Type of generalization in instruction: Logical and psychological problems in the structuring of school curricula. In J. Kilpatrick (Ed.), Soviet studies in mathematics education (Vol. 2). Reston, VA: National Council of Teachers of Mathematics.
Davydov, V. (2008). Problems of developmental instruction: A theoretical and experimental psychological study. New York: Nova Science Publishers.
Demonty, I., Vlassis, J., & Fagnant, A. (2018). Algebraic thinking, pattern activities and knowledge for teaching at the transition between primary and secondary school. Educational Studies in Mathematics, 1–19. https://doi.org/10.1007/s10649-018-9820-9
Glaser, R. & Pellegrino, J. (1982). Improving the skills of learning. In D. K. Detterman & R. J. Sternberg (Eds.), How and how much can intelligence be increased (pp. 197-212). Norwood, NJ: Ablex.
Haverty, L., Koedinger, K., Klahr, D., & Alibali, M. (2000). Solving Inductive Reasoning Problems in Mathematics: Not-so-Trivial Pursuit. Cognitive Science, 24(2), 249–298.
Herbert, S., Vale, C., Bragg, L. A., Loong, E., & Widjaja, W. (2015). A framework for primary teachers’ perceptions of mathematical reasoning. International Journal of Educational Research, 74, 26-37. http://dx.doi.org/10.1016/j.ijer.2015.09.005
Hodnik Čadež, T., & Manfreda Kolar, V. (2015). Comparison of types of generalizations and problem-solving schemas used to solve a mathematical problem. Educational Studies in Mathematics, 89(2), 283–306. https://doi.org/10.1007/s10649-015-9598-y
Klauer, K. (1996). Teaching inductive reasoning: some theory and three experimental studies. Learning and Instruction, 6(1), 37–57. https://doi.org/10.1016/0959-4752(95)00015-1
Manfreda, V., Slapar, M. & Hodnik, T. (2012). Comparison of competences in inductive reasoning between primary teachers' students and mathematics teachers' students. In B. Maj-Tatsis & K. Tatsis (Eds.), Generalization in mathematics at all educational levels. Rzeszów: Wydawnictwo Uniwersytetu Rzeszowskiego.
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: NCTM.
Neubert, G. A. & Binko, J. B. (1992). Inductive reasoning in the secondary classroom. Washington DC: National Education Association.
Pólya, G. (1957). How to solve it. A New aspect of mathematical method. New York: Doubleday & Company, Inc.
Pólya, G. (1966). Matemáticas y razonamiento plausible. Madrid: Tecnos.
Rivera, F., & Becker, J. R. (2003). The Effects of Numerical and Figural Cues on the Induction Processes of Preservice Elementary Teachers. Proceedings of the 27th Conference of the International Group for the Psychology of Mathematics Education Held Jointly with the 25th Conference of PME-NA, 4, 63–70.
Secretaría de Educación Pública (2011). Programas de estudio 2011. Guía para el maestro. Educación básica secundaria. México: Secretaría de Educación Pública.
Sriraman, B. (2003). Mathematical giftedness problem solving and the ability to formulate generalizations. The Journal of Secondary Gifted Education, 14(3), 151–165. https://doi.org/10.4219/jsge-2003-425
Sriraman, B., & Adrian, H. (2004). The Pedagogical Value and the Interdisciplinary Nature of Inductive Processes in Forming Generalizations : Reflections from the Classroom The University of Montana. Interchange, 35(4), 407–422.
Stylianides, G., Stylianides, A. y Shilling-Traina, L. (2013). Prospective teachers' challenges in teaching reasoning-and-proving. International Journal of Science and Mathematics Education, 11(6), 1463-1490. https://doi.org/10.1007/s10763-013-9409-9
Warren, E., Trigueros, M., & Ursini, S. (2016). Research on the learning and teaching of algebra. In A. Gutiérrez, G. Leder, & P. Boero (Eds.), The second handbook of research on the psychology of mathematics education. The journey continues (pp. 73–108). Rotterdam: Sense Publishers.