Contenido del artículo principal

Resumen

Introducción: Los desechos del litoral se incrementan hasta cuatro veces cada año, aunque muchos de ellos pueden generar sostenibilidad si se les aprovecha como recursos renovables; en este sentido, la investigación se basa en la propuesta STEAM de Garofalo adaptando su versión robótica citadina a la exploración educativa de playas. Se desarrolló un experimento de responsabilidad social mediante un programa de ecología robótica basado en tres fases pedagógicas: (a) Inteligencia ecológica social; (b) Tarea científica social y; (c) Reflexión científica; cuyos efectos intentan aportar en el cuidado sostenible de una playa contaminada. Método: A través del paradigma positivista, estudio de diseño experimental, se conformaron dos grupos de estudiantes de un total de 80 sujetos residentes en el distrito costero de Lima. Se abordó un contexto playero contaminado, desde el cual, estudiantes de escolaridad básica realizaron el reciclaje de desechos para elaborar prototipos de robot. Resultados: Los datos comparados en el experimento reportaron índices significativos que sustentan el incremento de las habilidades científicas y de la conciencia sobre el medio ambiente, así como los indicadores de cuidado de los elementos naturales y sus recursos. El programa de ecología robótica mejoró las habilidades de conocimiento, observación y reflexión científica. Conclusiones: La mejora de las habilidades científicas se incrementaron de forma significativa en el grupo experimental (t (74) = -3.831; p < .005), así como en la conciencia ambiental (t (72) = -2.720; p < .005). Aunque las dimensiones mejoraron, las diferencias obtenidas en la capacidad de conocimiento no fueron significativas en la comparación de grupos.

Detalles del artículo

Cómo citar
Holguin-Alvarez, J., Cruz-Montero, J., Ruiz-Salazar, J., & Ledesma-Pérez, F. (2023). Ecología robótica desde el litoral: resultados de un programa fortalecedor de las habilidades para la ciencia. PUBLICACIONES, 53(2), 13–47. https://doi.org/10.30827/publicaciones.v53i2.26816

Referencias

  1. Aghajani, M. (2018). Types of Intelligences as Predictors of Self-Efficacy: A Study on Iranian EFL Students. International Journal of Research in English Education, 3(4), 12-6. http://dx.doi.org/10.29252/ijree.3.4.12
  2. Aranzabal, A., Epelde, E., & Artetxe, M. (2022). Team formation on the basis of Belbin’s roles to enhance students’ performance in project based learning. Education for Chemical Engineers, 38, 22-37. https://doi.org/10.1016/j.ece.2021.09.001
  3. Arnett, M., Luo, Z., Paladugula, P. K., Cardenas, I. S., & Kim, J.-K. (2020). Robots Teaching Recycling: Towards Improving Environmental Literacy of Children. HRI ‘20: Companion of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, 615–616. https://doi.org/10.1145/3371382.3379462
  4. Bula, I., Hajrizi, E., & Kunicina, N. (2019). Demonstration of the use of robotics in the development of a scrap processing model for mechatronic education. IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), 1-4. https://doi.org/10.1109/RTUCON48111.2019.8982323
  5. Castellano, G., De Carolis, B., D´Errico, F., Macchiarulo, N., & Rossano, V. (2021). PeppeRecycle: Improving Children’s Attitude Toward Recycling by Playing with a Social Robot. International Journal of Social Robotics, 13, 97–111. https://doi.org/10.1007/s12369-021-00754-0
  6. Chang, C. J., Liu, C. C., & Tsai, C. C. (2016). Explicaciones científicas de apoyo con dibujos y narraciones en tabletas: un análisis de patrones de explicación. Asia-Pacific Education Researcher, 25, 173–184. https://doi.org/10.1007/s40299-015-0247-0
  7. Chalmers, C. (2018). Robotics and computational thinking in primary school. International Journal of Child-Computer Interaction, 17, 93-100. https://doi.org/10.1016/j.ijcci.2018.06.005
  8. Da Costa, A., Rodrigues, F., & Ramírez, L. (2020). Creative robotics for the development of inclusive Maker culture in elementary education: the case of the Capistrano de Abreu Municipal School, in São Paulo, Brazil. Revista de Investigación en Educación Militar, 1(1), 69-91. https://doi.org/10.47961/27450171.7
  9. De Alburqueque, A. P., Kelner, J., Hung, P.C.K., De Souza Jeronimo, B., Rocha, R., & Ribeiro, A. F. (2021). Toy user interface design—Tools for Child–Computer Interaction. International Journal of Child-Computer Interaction, 30, 100307. https://doi.org/10.1016/j.ijcci.2021.100307
  10. Donnermann, M., Lein, M., Messingschlager, T., Riedmann, A., Schaper, P., Steinhaeusser, S., & Lugrin, B. (2021). Social robots and gamification for technology supported learning: An empirical study on engagement and motivation. Computers in Human Behavior, 121, 106792. https://doi.org/10.1016/j.chb.2021.106792
  11. Emmiyati, N., Rasyid, M. A., Rahman, M. A., Arsyad, A., & Dirawan, G. D. (2014). Multiple Intelligences Profiles of Junior Secondary School Students in Indonesia. International Education Studies, 7(11), 77-103. https://doi.org/10.5539/ies.v7n11p103
  12. Fischer, F., Kollar, I., Ufer, S., Sodian, B., Hussman, H., Pekrun, R., Neuhaus, B., Dorner, B., Pankofer, S., Fischer, M., Strijbos, J. W., Heene, M., & Eberle, J. (2014). Scientific Reasoning and Argumentation: Advancing an Interdisciplinary Research Agenda in Education. Frontline Learning Research, 2(3), 28-45. https://doi.org/10.14786/flr.v2i2.96
  13. Fortunati, L., Manganelli, A. M., & Ferrin, G. (2022). Arts and crafts robots or LEGO® MINDSTORMS robots? A comparative study in educational robotics. International Journal of Technology and Design Education, 32, 287–310. https://doi.org/10.1007/s10798-020-09609-7
  14. Gardner, H., Kornhaber, M. L., & Wake, W. K. (1996). Intelligence: Multiple perspectives. Harcourt Brace College Publishers.
  15. Garofalo, D. D. (2019). Robotics with scratch a creative education for all. Revista Brasileira de Pós-Graduação, 15(34), 1-21. https://doi.org/10.21713/rbpg.v15i34.1611
  16. Garofalo, D. D., & Bacich, L. (2020). Um olhar para aprendizagem socioemocional no STEAM. En L. Bacich, L. Holanda (Org.). STEAM em sala de aula: a aprendizagem baseada en projetos integrando conhecimientos na educação básica, 9. Grupo Educação SA.
  17. Gentil, D., Martins, F., Palheta, M. C., & Da Silva, W. (2019). Robótica pedagógica na amazônia-aprendizagem significativa e conectividade na Educação 4.0. Anais IV CONAPESC (2019). https://editorarealize.com.br/artigo/visualizar/57203
  18. Hiğde, E., & Aktamış, H. (2022). The effects of STEM activities on students’ STEM career interests, motivation, science process skills, science achievement and views. Thinking Skills and Creativity, 43, 101000. https://doi.org/10.1016/j.tsc.2022.101000
  19. Irianto, D., Herlambang, Y., & Hana, Y. (2018). Multiliteration model based on Eco pedagogy Approach in improving ecological Intelligence and developing characters. Universitas Pendidikan Indonesia, 135-142. http://proceedings.upi.edu/index.php/icee/article/view/30/27
  20. Lin, V., Yeh, H.-C., Huang, H.-H., & Chen, N.-S. (2021). Enhancing EFL vocabulary learning with multimodal cues supported by an educational robot and an IoT-Based 3D book. System, 104, 102691. https://doi.org/10.1016/j.system.2021.102691
  21. Liu, X., Huang, P., & Ge, S. S. (2021). Optimized control for human-multi-robot collaborative manipulation via multi-player Q-learning. Journal of the Franklin Institute, 358 (11), 5639-5658. https://doi.org/10.1016/j.jfranklin.2021.03.017
  22. Lizana, J., Manteigas, V., Chacartegui, R., Lage, J., Becerra, J. A., Blondeau, P., Rato, R., Silva, F., Gamarra, A. R., Herrera, I., Gomes, M., Fernandez, A., Berthier, C., Gonҫalves, K., Alexandre, J. L., Almeida-Silva, M., & Almeida, S. M. (2021). A methodology to empower citizens towards a low-carbon economy. The potential of schools and sustainability indicators. Journal of Environmental Management, 284, 112043. https://doi.org/10.1016/j.jenvman.2021.112043
  23. Luo, F., Antonenko, P. D., & Davis, E. C. (2020). Exploring the evolution of two girls’ conceptions and practices in computational thinking in Science. Computers & Education, 146, 103759. https://doi.org/10.1016/j.compedu.2019.103759
  24. Maiurova, A., Kurniawan, T. A., Kustikova, M., Bykovskaia, E., Othman, M. H. D., Singh, D., & Goh, H. W. (2022). Promoting digital transformation in waste collection service and waste recycling in Moscow (Russia): Applying a circular economy paradigm to mitigate climate change impacts on the environment. Journal of Cleaner Production, 354, 131604. https://doi.org/10.1016/j.jclepro.2022.131604
  25. Madyal, J., Platte, L., Arndt, J., Spangenberg, M., & Zӑhl, K. (2020). MoBi - An Interactive Classroom Robot Helping Children to Separate Waste. HRI ‘20: Companion of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, 629–630. https://doi.org/10.1145/3371382.3379459
  26. Oliveira, R., Arriaga, P., Santos, F. P., Mascarenhas, A., & Paiva, A. (2021). Towards prosocial design: A scoping review of the use of robots and virtual agents to trigger prosocial behavior. Computers in Human Behavior, 114, 106547. https://doi.org/10.1016/j.chb.2020.106547
  27. Ong, E. T., Ramiah, P., Ruthven, K., Salleh, S. M., Yusuff, N. A. N., & Mokhsein, S. E. (2015). Acquisition of Basic Science Process Skills among Malaysian Upper Primary Students. Research in Education, 94(1), 88-101. https://doi.org/10.7227/RIE.0021
  28. Ormancı, Ü.,& Çepni, S. (2020). Investigating the Effects of web-based Science Material for Guided Inquiry Approach on Information and Communication Skills of Students. Participatory Educational Research, 7(1), 201-219. https://doi.org/10.17275/per.20.12.7.1
  29. Palupi, B., Subiyantoro, S., Rukayah, & Triyanto. (2020). The Effectiveness of Guided Inquiry Learning (GIL) and Problem-Based Learning (PBL) for Explanatory Writing Skill. International Journal of Instruction, 13(1), 713-730. https://doi.org/10.29333/iji.2020.13146a
  30. Pearce, H., Hudders, L., & Van de Sompel, D. (2020). Young energy savers: Exploring the role of parents, peers, media and schools in saving energy among children in Belgium. Energy Research & Social Science, 63, 101392. https://doi.org/10.1016/j.erss.2019.101392
  31. Pivetti, M., Di Battista, S., Agatolio, F., Simaku, B., Moro, M., & Menegatti, E. (2020). Educational Robotics for children with neurodevelopmental disorders: A systematic review. Heliyon, 6(10). https://doi.org/10.1016/j.heliyon.2020.e05160
  32. Pramono, S., Prajanti, S., & Wibawanto, W. (2019). Virtual Laboratory for Elementary Students. Journal of Physics: Conference Series, 1-6. https://doi.org/10.1088/1742-6596/1387/1/012113
  33. Schouten, A. P., Portegies, T. C., Withuis, I., Willemsen, L. M., & Mazerant-Dubois, K. (2022). Robomorphism: Examining the effects of telepresence robots on between-student cooperation. Computers in Human Behavior, 126. https://doi.org/10.1016/j.chb.2021.106980
  34. Valdés, A., Arteaga, L., & Martínez, J. (2016). La enseñanza de las ciencias en el nuevo milenio. Retos y sugerencias. Revista Universidad y Sociedad, 8(1), 169-176. https://rus.ucf.edu.cu/index.php/rus/article/view/321
  35. Yang, Y., Chen, L., & Xue, L. (2021). Looking for a Chinese solution to global problems: The situation and countermeasures of marine plastic waste and microplastics pollution governance system in China. Chinese Journal of Population, Resources and Environment, 19(4), 352-357. https://doi.org/10.1016/j.cjpre.2022.01.008
  36. Yuksel, I. (2019). The effects of research inquiry based learning on the scientific reasoning skills of prospective science teachers. Journal of Education and Training Studies, 7(4), 273-278. https://doi.org/10.11114/jets.v7i4.4020
  37. Zimmerman, C. (2005). The Development of Scientific Reasoning Skills: What Psychologists Contribute to an Understanding of Elementary Science Learning. https://www.informalscience.org/development-scientific-reasoning-skills-what-psychologists-contribute-understanding-elementary