Contenido del artículo principal

Resumen

El objetivo del presente artículo es analizar las diferentes formas en que las tecnologías digitales afectan a la salud de los jóvenes. Para lograr esto, se realizó una revisión de la literatura siguiendo dos etapas. Fueron estudiadas 65 publicaciones científicas y procesadas en dos etapas sucesivas. En la primera, se procesaron 30 trabajos disponibles, de manera exclusiva, en la Base de Datos ScienceDirect y que evidenciaron una relación conceptual en el ámbito de la salud mental y el uso de las tecnologías digitales. En una segunda etapa, se trabajó solo con las fuentes que incluyen el tema de la COVID-19 y sus relaciones con la salud mental y el uso de las tecnologías digitales, en un contexto de aportaciones diferenciadas para el ámbito universitario. Mediante una síntesis que recoge el análisis de contenido temático de la literatura se exponen los siguientes resultados: 1) el uso de las tecnologías digitales provoca efectos positivo y negativos en los jóvenes, pero se manifiestan diferencias significativas en el número de publicaciones y los efectos descritos; 2) Durante la Pandemia se agudizan los problemas de salud mental en los jóvenes que utilizan las tecnologías por causas asociadas al confinamiento, ambientes de aprendizaje y las propias del miedo al contagio.

Palabras clave

Comportamiento, COVID-19, Depresión, Estrés, Familia, Redes Sociales, Internet, Salud mental, Sueño

Detalles del artículo

Cómo citar
Suárez Monzón, N., Requeiro Almeida, R., Heredia Gálvez, S. A., & Lara Paredes, D. G. (2022). Salud mental y usos de la tecnología en el contexto universitario. Una revisión de la literatura. PUBLICACIONES, 52(3), 191–228. https://doi.org/10.30827/publicaciones.v52i3.22272

Referencias

  1. Ahmad, J., Hsiu, L., Kuo, M., Shahrun, N., Min, V., Pallath, C., Phoay, C., Hong, K…. Hoong, Ng. (2020). Teaching and learning of postgraduate medical physics using Internet-based e-learning during the COVID-19 pandemic – a case study from Malaysia. Physica Medica. http://dx.10.1016/j.ejmp.2020.10.002
  2. Alva De la Selva, A. R. (2015). Los nuevos rostros de la desigualdad en el siglo xxi: la brecha digital. Revista Mexicana de Ciencias Políticas y Sociales, 60(223), 265-285. http://dx.10.1016/S0185-1918(15)72138-0
  3. Aparicio, P., Perea, A. J., Martinez, M. P., Varo, I. S., & Vaquero, M. (2017). Social networks’ unnoticed influence on body image in Spanish university students. Telematics and Informatics, 34(8), 1685-1692. http://dx.10.1016/j.tele.2017.08.001
  4. Beaunoyer, E., Dupéré, S., & Guitton, M. (2020). COVID-19 and digital inequalities: Reciprocal impacts and mitigation strategies. Computers in Human Behavior, 111, 106424. http://dx.10.1016/j.chb.2020.106424
  5. Besser, A., Lotem, S., & Zeigler-Hill, V. (2020). Psychological Stress and Vocal Symptoms Among University Professors in Israel: Implications of the Shift to Online Synchronous Teaching During the COVID-19 Pandemic. Journal of Voice. http://dx.10.1016/j.jvoice.2020.05.028
  6. Bzdok, D., & Dunbar, R. (2020). The Neurobiology of Social Distance. Trends in Cognitive Sciences. http://dx.10.1016/j.tics.2020.05.016
  7. Calheiros, D., & Mendes, E. (2016). Consultoria colaborativa a distância em tecnologia assistiva para professores. Cad. Pesqui, 46(162), 1100-1123. http://dx.10.1590/198053143562
  8. Forman, C., & Zeebroeck, N. (2019). Digital technology adoption and knowledge flows within firms: Can the Internet overcome geographic and technological distance? Research Policy, 48(8), 103697. http://dx.10.1016/j.respol.2018.10.021
  9. Gulsecen, S., Sebnem, O., Murat, G., & Emre, A. (2015). The Good Reader of Digital World, Digital Natives: Are They Good Writer Also? Procedia - Social and Behavioral Sciences, 191, 2396-2401. http://dx.10.1016/j.sbspro.2015.04.444
  10. Gurgel, G. (2016). Rupturas paradigmáticas e novas interfaces entre educação e saúde. Caderno de Pesquisa, 46(162), 1172-1191. http://dx.10.1590/198053143528
  11. Al-hariri, M., & Al-hattami, A. (2017). Impact of students’ use of technology on their learning achievements in physiology courses at the University of Dammam. Journal of Taibah University Medical Sciences, Netherlan, 12 (1), 82-85. http://dx.0.1016/j.jtumed.2016.07.004
  12. Haider, H. S., & Al-Salman, S. (2020). Dataset of Jordanian University Students’ Psychological Health Impacted by Using E-learning Tools during COVID-19. Data in Brief, (34), 1-10. http://dx.10.1016/j.dib.2020.106104
  13. Hasan, N., & Bao, Y. (2020). Impact of “e-Learning crack-up” perception on psychological distress among college students during COVID-19 pandemic: A mediating role of “fear of academic year loss. Children and Youth Services Review, 118. http://dx.10.1016/j.childyouth.2020.10535
  14. Jenkins, E., Bungay, V., Patterson, A., Saewyc, E., & Johnson, J. (2018). Assessing the impacts and outcomes of youth driven mental health promotion: A mixed-methods assessment of the Social Networking Action for Resilience study. Journal of Adolescence, 67, 1-11. http://dx.10.1016/j.adolescence.2018.05.009
  15. Kaparounaki, C., Patsali, M., Mousa, D.-P., Papadopoulou, E., Papadopoulou, K., & Fountoulakis, K. (2020). University students’ mental health amidst the COVID-19 quarantine in Greece. Psychiatry Research, 290, 113111. http://dx.10.1016/j.psychres.2020.113111
  16. Kapasia, N., Paul, P., Roy, A., Saha, J., Zaveri, A., Mallick, R., Barman, B., Das, P.,… Chouhan, P. (2020). Impact of lockdown on learning status of undergraduate and postgraduate students during COVID-19 pandemic in West Bengal, India. Children and youth services review, 116, 105194. http://dx.10.1016/j.childyouth.2020.105194
  17. Kesharwani, A. (2020). Do (how) digital natives adopt a new technology differently than digital immigrants? A longitudinal study. Information & Management, 57(2), 103170. http://dx.10.1016/j.im.2019.103170
  18. Khan, A. H., Sultana, S., Hossain, S., Hasan, M. T., Ahmed, H. U., & Sikder, T. (2020). The impact of COVID-19 pandemic on mental health & wellbeing among home-quarantined Bangladeshi students: A cross-sectional pilot study. Journal of Affective Disorders. http://dx.10.1016/j.jad.2020.07.135
  19. Kim, J., Rapee, R., Oh, K., & Moon, H. S. (2018). Retrospective report of social withdrawal during adolescence and current maladjustment in young adulthood: Cross-cultural comparisons between Australian and South Korean students. Journal of Adolescence, 31(5), 543-563. doi: http://dx.10.1016/j.adolescence.2007.10.011.
  20. Koyama, Y., Fujiwara, T., Isumi, A., & Doi, S. (2020). Degree of influence in class modifies the association between social network diversity and well-being: results from a large population-based study in Japan. Social Science & Medicine, 113170. doi: http://dx.10.1016/j.socscimed.2020.113170
  21. Lissitsa, S., & Chachashvili-Bolotin, S. (2016). Life satisfaction in the internet age – Changes in the past decade. Computers in Human Behavior, 54, 197-206. doi: http://dx.10.1016/j.chb.2015.08.001
  22. Luo, Y., Deng, Y., & Zhang, H. (2020). The influences of parental emotional warmth on the association between perceived teacher–student relationships and academic stress among middle school students in China,. Children and Youth Services Review, 114, 105014. doi: http://dx.10.1016/j.childyouth.2020.105014
  23. Mishra, D. L., Gupta, D. T., & Shree, D. A. (2020). Online Teaching-Learning in Higher Education during Lockdown Period of COVID-19 Pandemic. International Journal of Educational Research Open, 100012. doi: http://dx.10.1016/j.ijedro.2020.100012
  24. Nabity-Grover, T., Christy, M. K., & Thatcher, J. (2020). Inside out and outside in: How the COVID-19 pandemic affects self-disclosure on social media. International Journal of Information Management, 55, 102188. http://dx.10.1016/j.ijinfomgt.2020.102188
  25. Ni, L., Yuan, Y., Wang, X., Zhang, M., & Zhang, J. (2018). A Location Privacy Preserving Scheme Based on Repartitioning Anonymous Region in Mobile Social Network. Procedia Computer Science, 129, 368-371. https://doi.org/10.1016/j.procs.2018.03.091
  26. Odriozola-González, P., Planchuelo-Gómez, Á., Irurtia, M. J., & de Luis García, R. (2020). Psychological effects of the COVID-19 outbreak and lockdown among students and workers of a Spanish university. Psychiatry Research, 290, 113108. http://dx.10.1016/j.psychres.2020.113108
  27. Oosterhoff, B., Palmer, C., Wilson, J., & Shook, N. (2020). Adolescents’ Motivations to Engage in Social Distancing During the COVID-19 Pandemic: Associations With Mental and Social Health. Journal of Adolescent Health. http://dx.10.1016/j.jadohealth.2020.05.004
  28. Orzech, K., Grandner, M., Roane, B., & Carskadon, M. (2016). Digital media use in the 2 h before bedtime is associated with sleep variables in university students. Computers in Human Behavior, 55, 43-50. http://dx.10.1016/j.chb.2015.08.049
  29. Peñalva, A., Leiva, J., & Zuazua, I. ( 2017). The Role of Adults in Children Digital Literacy. Procedia - Social and Behavioral Sciences, 23 (7), 887-892. http://dx.10.1016/j.sbspro.2017.02.124
  30. Rock, A., Barrington, C., Abdoulayi, S., Tsoka, M., Mvuls, P., & Handa, S. (2016). Social networks, social participation, and health among youth living in extreme poverty in rural Malawi. Social Science & Medicine, 170, 55-62. http://dx.10.1016/j.socscimed.2016.10.005
  31. Romero-Ruiz, K., Echeverri-Sánchez, L., Peña-Plata. J., Vásquez-Giraldo, S., Aguilera-Cardona, M., Herazo-Avendaño, C., Valencia-Arias, A., . . . Bran Piedrahita, L. (2017). Information and Communication Technologies Impact on Family Relationship. Procedia - Social and Behavioral Sciences, 237, 30-37. http://dx.10.1016/j.sbspro.2017.02.007
  32. Rivero, Y., Suárez, N., & Fernández, E. V. (2017). Promoción y educación para la salud en el contexto universitario ecuatoriano: desafíos y propuesta de desarrollo profesional. Revista Conrado, 14(61), 125- 132.
  33. Ryhtä, I., Elonen, I., Saaranen, T., Sormunen, M., Mikkonen, K., Kääriäinen, M., Koskinen, C., Koskinen, M.,…Salminen, L. (2020). Social and health care educators’ perceptions of competence in digital pedagogy: A qualitative descriptive study. Nurse Education Today, 104521. dhttp://dx.10.1016/j.nedt.2020.104521
  34. Rzymski, P., & Nowicki, M. (2020). COVID-19-related prejudice toward Asian medical students: A consequence of SARS-CoV-2 fears in Poland. Journal of Infection and Public Health, 12(6), 873-876. http://dx.10.1016/j.jiph.2020.04.013
  35. Saefi, M., Fauzi, A., Kristiana, E., Adi, W. C., Muchson, M., Setiawan, M. E., Islami, N. N., Ningrum, D. E. A,... Ramadhani, M. (2020). Survey data of COVID-19-related knowledge, attitude, and practices among indonesian undergraduate students. Data Brief. http://dx.10.1016/j.dib.2020.105855.
  36. Savitsky, B., Findling, Y., Ereli, A., & Hendel, T. (2020). Anxiety and coping strategies among nursing students during the covid-19 pandemic. Nurse Education in Practice, 102809. http://dx.10.1016/j.nepr.2020.102809
  37. Seo, Y., & Je, Y. (2018). Disturbed eating tendencies, health-related behaviors, and depressive symptoms among university students in Korea. Clinical Nutrition Experimental, 19, 23-31. https://doi.org/10.1016/j.yclnex.2018.02.001
  38. Spivey, C., Havrda, D., Stallworth, S., Renfro, C., & Chisholm-Burns, M. (2020). Longitudinal examination of perceived stress and academic performance of first-year student pharmacists. Currents in Pharmacy Teaching and Learning. http://dx.10.1016/j.cptl.2020.05.002
  39. Trung, T., Hoang, A. D., Nguyen, T., Dinh, V. H., Nguyen, Y. C., & Pham, H. H. (2020). Dataset of Vietnamese student’s learning habits during COVID-19. Data in Brief, 30. http://dx.10.1016/j.dib.2020.105682
  40. Van der Velden, P. G., Setti, I., van der Meulen, E., & Das, M. (2019). Does social networking sites use predict mental health and sleep problems when prior problems and loneliness are taken into account? A population-based prospective study. Computers in Human Behavior, 93, 200-209. http://dx.10.1016/j.chb.2018.11.047
  41. Vaterlaus, J., Patten, E., Roche, C., & Young, J. (2015). The perceived influence of social media on young adult health behaviors. Computers in Human Behavior, 45, 151-157. http://dx.10.1016/j.chb.2014.12.013
  42. Wang, H. Y., & Leif, C. C. (2018). Digital Nativity and Information Technology Addiction: Age cohort versus individual difference approaches. Computers in Human Behavior, 90, 1-9. http://dx.10.1016/j.chb.2018.08.031
  43. Wang, Y., Huang, Q., Davison, R., & Yang, F. (2020). Role stressors, job satisfaction, and employee creativity: The cross-level moderating role of social media use within teams. Information & Management, 103317. http://dx.10.1016/j.im.2020.103317
  44. Wang, Z. H., Yang, H. L., Yang, Y. Q., Liu, D., Li, Z. H., Zhang, X. R., Zhang, Y. J., Shen, D., . . . Mao, C. (2020). Prevalence of Anxiety and Depression symptom, and the Demands for Psychological Knowledge and Interventions in college students during COVID-19 epidemic: A large Cross-Sectional Study. Journal of Affective Disorders. http://dx.10.1016/j.jad.2020.06.034
  45. Wolfers, L., Festl, R., & Utz, S. (2020). Do smartphones and social network sites become more important when experiencing stress? Results from longitudinal data. Computers in Human Behavior, 109, 106339. http://dx.10.1016/j.chb.2020.106339
  46. Kend-Chieh, Y., & Po-Hong, S. (2020). Cognitive age in technology acceptance: At what age are people ready to adopt and continuously use fashionable products? Telematics and Informatics, 51, 101400. http://dx.10.1016/j.tele.2020.101400
  47. Yin, H., Han, J., & Perron, B. (2020). Why are Chinese university teachers (not) confident in their competence to teach? The relationships between faculty-perceived stress and self-efficacy. International Journal of Educational Research, 100, 101529. http://dx.10.1016/j.ijer.2019.101529
  48. Zhai, Y., & Du, X. (2020). Addressing collegiate mental health amid COVID-19 pandemic. Psychiatry Research, 288, 113003. http://dx.1