Validación de la activación muscular de las extremidades inferiores estimada mediante modelado musculoesquelético y electromiografía en el topspin de derecha y revés del tenis de mesa
Palabras clave:
modelado musculoesquelético, activación muscular, electromiografía, validaciónResumen
El objetivo de este estudio fue validar la activación muscular de las extremidades inferiores estimada mediante optimización estática y electromiografía (EMG) en el topspin de derecha y revés. El objetivo secundario fue comparar las activaciones estimadas de los principales grupos musculares entre los golpes de derecha y revés. Ocho jugadores hombre universitarios de tenis de mesa realizaron con el máximo esfuerzo los golpes topspin de derecha y revés cruzados en la pista. Los movimientos de los golpes y las fuerzas de reacción del suelo fueron medidos con un sistema de captura del movimiento y dos placas de fuerza. Las señales EMG de los músculos de los 16 miembros inferiores fueron grabadas con un sistema EMG inalámbrico. Se usó el algoritmo de optimización estática OpenSim para estimar la activación muscular de los miembros inferiores durante los golpes, y luego se compararon los resultados con la activación de la EMG. De los siete músculos que mostraron activación máxima > 0,3 en el golpe de derecha, cinco mostraron un coeficiente de correlación de Pearson > 0,3. De los cuatro músculos que mostraron activación máxima > 0,3 durante el golpe de revés, los cuatro mostraron un coeficiente de correlación de Pearson > 0,3. Sin embargo, algunos músculos, como el glúteo medio, mostraron una baja correlación entre la activación estimada y la EMG. Una posible causa es la cocontracción de los músculos involucrados. Los coeficientes de correlación de concordancia fueron menores que sus respectivos coeficientes de correlación de Pearson. Este resultado refleja que la envolvente (activación) de la EMG es también una estimación de la activación muscular y está sujeta a ruido y factores de confusión. Es necesario realizar comparaciones con otras mediciones independientes, como las imágenes musculares por ultrasonido y la carga articular con instrumentos, para lograr una validación más sólida del modelado musculoesquelético y la activación muscular. El glúteo mayor y los isquiotibiales en el lado de juego, y el recto femoral en el lado de no juego, mostraron una mayor activación durante el golpe de derecha que durante el revés. Los resultados generales sugieren que el algoritmo de optimización estática puede estimar adecuadamente la actividad muscular de las extremidades inferiores durante el topspin de derecha y revés.
Descargas
Citas
Alexander, N., & Schwameder, H. (2016). Comparison of estimated and measured muscle activity during inclined walking. Journal of Applied Biomechanics, 32(2), 150-159. https://doi.org/10.1123/jab.2015-0021
Alvim, F. C., Lucareli, P. R. G., & Menegaldo, L. L. (2018). Predicting muscle forces during the propulsion phase of single leg triple hop test. Gait and Posture, 59, 298-303. https://doi.org/10.1016/j.gaitpost.2017.07.038
Bańkosz, Z., & Winiarski, S. (2018). Correlations between Angular Velocities in Selected Joints and Velocity of Table Tennis Racket during Topspin Forehand and Backhand. Journal of Sports Science & Medicine, 17(2), 330-338. http://www.ncbi.nlm.nih.gov/pubmed/29769835
Begovic, H., Zhou, G. Q., Li, T., Wang, Y., & Zheng, Y. P. (2014). Detection of the electromechanical delay and its components during voluntary isometric contraction of the quadriceps femoris muscle. Frontiers in Physiology, 5, 1-8. https://doi.org/10.3389/fphys.2014.00494
Chen, M.-Z., Wang, X., Chen, Q., Ma, Y., Malagoli Lanzoni, I., & Lam, W.-K. (2022). An analysis of whole-body kinematics, muscle strength and activity during cross-step topspin among table tennis players. International Journal of Performance Analysis in Sport, 22(1), 16-28. https://doi.org/10.1080/24748668.2022.2025712
Cohen, J. (2013). Statistical Power Analysis for the Behavioral Sciences (2nd editio). Hillside, NJ: Routledge. https://doi.org/10.4324/9780203771587
Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T., Guendelman, E., & Thelen, D. G. (2007). OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering. https://doi.org/10.1109/TBME.2007.901024
Dorn, T. W., Schache, A. G., & Pandy, M. G. (2012). Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance. Journal of Experimental Biology. https://doi.org/10.1242/jeb.075051
Dupré, T., Dietzsch, M., Komnik, I., Potthast, W., & David, S. (2019). Agreement of measured and calculated muscle activity during highly dynamic movements modelled with a spherical knee joint. Journal of Biomechanics, 84, 73-80. https://doi.org/10.1016/j.jbiomech.2018.12.013
Gamage, S. S. H. U., & Lasenby, J. (2002). New least squares solutions for estimating the average centre of rotation and the axis of rotation. Journal of Biomechanics, 35(1), 87-93. https://doi.org/10.1016/S0021-9290(01)00160-9
Halvorsen, K. (2003). Bias compensated least squares estimate of the center of rotation. Journal of Biomechanics, 36(7), 999-1008. https://doi.org/10.1016/S0021-9290(03)00070-8
He, Y., Sun, D., Yang, X., Fekete, G., Baker, J. S., & Gu, Y. (2021). Lower limb kinetic comparisons between the chasse step and one step footwork during stroke play in table tennis. PeerJ, 9, 1-14. https://doi.org/10.7717/peerj.12481
Hermens, H. J., Freriks, B., Disselhorst-Klug, C., & Rau, G. (2000). Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology, 10(5), 361-374. https://doi.org/10.1016/S1050-6411(00)00027-4
Hicks, J. L., Uchida, T. K., Seth, A., Rajagopal, A., & Delp, S. L. (2015). Is my model good enough? best practices for verification and validation of musculoskeletal models and simulations of movement. Journal of Biomechanical Engineering, 137(2), 020905. https://doi.org/10.1115/1.4029304
Iino, Y. (2018). Hip joint kinetics in the table tennis topspin forehand: relationship to racket velocity. Journal of Sports Sciences, 36(7), 834-842. https://doi.org/10.1080/02640414.2017.1344777
Iino, Y., & Kojima, T. (2009). Kinematics of table tennis topspin forehands: effects of performance level and ball spin. Journal of Sports Sciences, 27(12), 1311-1321. https://doi.org/10.1080/02640410903264458
Iino, Y., & Kojima, T. (2011). Kinetics of the upper limb during table tennis topspin forehands in advanced and intermediate players. Sports Biomechanics, 10(4), 361-377. https://doi.org/10.1080/14763141.2011.629304
Iino, Y., & Kojima, T. (2016). Mechanical energy generation and transfer in the racket arm during table tennis topspin backhands. Sports Biomechanics, 15(2), 180-197. https://doi.org/10.1080/14763141.2016.1159722
Jiang, Z., & Mirka, G. A. (2007). Application of an entropy-assisted optimization model in prediction of agonist and antagonist muscle forces. Proceedings of the Human Factors and Ergonomics Society, 2, 923-927. https://doi.org/10.1177/154193120705101512
Le Mansec, Y., Dorel, S., Hug, F., & Jubeau, M. (2018). Lower limb muscle activity during table tennis strokes. Sports Biomechanics. https://doi.org/10.1080/14763141.2017.1354064
Lai, A., Arnold, A. S., & Wakeling, J. M. (2017). Why are Antagonist Muscles Co-activated in My Simulation? A Musculoskeletal Model for Analysing Human Locomotor Tasks. Annals of biomedical engineering, 45(12), 2762–2774. https://doi.org/10.1007/s10439-017-1920-7
Lin, L. I. (1989). A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics, 45(1), 255-268. https://doi.org/10.2307/2532051
Liu, M. Q., Anderson, F. C., Schwartz, M. H., & Delp, S. L. (2008). Muscle contributions to support and progression over a range of walking speeds. Journal of Biomechanics, 41(15), 3243-3252. https://doi.org/10.1016/j.jbiomech.2008.07.031
MacIntosh, A. R., & Keir, P. J. (2017). An open-source model and solution method to predict co-contraction in the finger. Computer Methods in Biomechanics and Biomedical Engineering, 20(13), 1373-1381. https://doi.org/10.1080/10255842.2017.1364732
Malagoli Lanzoni, I., Bartolomei, S., Di Michele, R., & Fantozzi, S. (2018). A kinematic comparison between long-line and cross-court top spin forehand in competitive table tennis players. Journal of Sports Sciences, 36(23), 2637-2643. https://doi.org/10.1080/02640414.2018.1456394
Malagoli Lanzoni, I., Di Michele, R., & Merni, F. (2014). A notational analysis of shot characteristics in top-level table tennis players. European Journal of Sport Science, 14(4), 309-317. https://doi.org/10.1080/17461391.2013.819382
Neptune, R. R., Sasaki, K., & Kautz, S. A. (2008). The effect of walking speed on muscle function and mechanical energetics. Gait and Posture, 28(1), 135-143. https://doi.org/10.1016/j.gaitpost.2007.11.004
Qian, J., Zhang, Y., Baker, J. S., & Gu, Y. (2016). Effects of performance level on lower limb kinematics during table tennis forehand loop. Acta of Bioengineering and Biomechanics, 18(3), 149-155. https://doi.org/10.5277/ABB-00492-2015-03
Ramsey, D. K., & Wretenberg, P. F. (1999). Biomechanics of the knee: methodological considerations in the in vivo kinematic analysis of the tibiofemoral and patellofemoral joint. Clinical Biomechanics, 14(9), 595-611. https://doi.org/10.1016/S0268-0033(99)00015-7
Roelker, S. A., Caruthers, E. J., Hall, R. K., Pelz, N. C., Chaudhari, A. M. W., & Siston, R. A. (2020). Effects of optimization technique on simulated muscle activations and forces. Journal of Applied Biomechanics, 36(4), 259-278. https://doi.org/10.1123/JAB.2019-0021
Seemiller, D., & Holowchak, M. (1997). Winning table tennis: Skills, drills, and strategies. Champaign, IL: Human Kinetics.
Seth, A., Sherman, M., Reinbolt, J. a., & Delp, S. L. (2011). OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange. Procedia IUTAM, 2, 212-232. https://doi.org/10.1016/j.piutam.2011.04.021
Shao, S., Yu, C., Song, Y., Baker, J. S., Ugbolue, U. C., Lanzoni, I. M., & Gu, Y. (2020). Mechanical character of lower limb for table tennis cross step maneuver. International Journal of Sports Science & Coaching, 15(4), 552-561. https://doi.org/10.1177/1747954120922936
Staudenmann, D., Roeleveld, K., Stegeman, D. F., & van Dieën, J. H. (2010). Methodological aspects of SEMG recordings for force estimation – A tutorial and review. Journal of Electromyography and Kinesiology, 20(3), 375-387. https://doi.org/10.1016/j.jelekin.2009.08.005
Trinler, U., Leboeuf, F., Hollands, K., Jones, R., & Baker, R. (2018). Estimation of muscle activation during different walking speeds with two mathematical approaches compared to surface EMG. Gait and Posture, 64, 266-273. https://doi.org/10.1016/j.gaitpost.2018.06.115
Wang, M., Fu, L., Gu, Y., Mei, Q., Fu, F., & Fernandez, J. (2018). Comparative Study of Kinematics and Muscle Activity between Elite and Amateur Table Tennis Players during Topspin Loop Against Backspin Movements. Journal of Human Kinetics, 64(1), 25-33. https://doi.org/10.1515/hukin-2017-0182
Wibawa, A. D., Verdonschot, N., Halbertsma, J. P. K., Burgerhof, J. G. M., Diercks, R. L., & Verkerke, G. J. (2016). Musculoskeletal modeling of human lower limb during normal walking, one-legged forward hopping and side jumping: Comparison of measured EMG and predicted muscle activity patterns. Journal of Biomechanics, 49(15), 3660-3666. https://doi.org/10.1016/j.jbiomech.2016.09.041
Zhou, S., Lawson, D. L., Morrison, W. E., & Fairweather, I. (1995). Electromechanical delay in isometric muscle contractions evoked by voluntary, reflex and electrical stimulation. European Journal of Applied Physiology and Occupational Physiology, 70(2), 138-145. https://doi.org/10.1007/BF00361541
Żuk, M., Syczewska, M., & Pezowicz, C. (2018). Use of the surface electromyography for a quantitative trend validation of estimated muscle forces. Biocybernetics and Biomedical Engineering, 38(2), 243-250. https://doi.org/10.1016/j.bbe.2018.02.001