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Abstract: This article examinesMauricio Suárez’s inferentialist account of scientific representation in light
of recent advances in neuroscience and artificial intelligence (NeuroAI).While it offers valuable pragmatic
insights, I argue it is insufficient to capture the dynamic, computational, and biological nature of neural
representations. Drawing on the mechanistic, functionalist, and representationalist (MFR) approach
and empirical findings, I maintain they are not mere abstract entities but are embodied in the physical
and functional properties of neural systems. I challenge arguments against the necessity and sufficiency
of similarity and isomorphism, highlighting computational transformations, functional roles, and the
directionality of processing that shape content. The Hodgkin–Huxley model and neurocomputationalism
employing artificial neural networks support the MFR and challenge Suárez’s inferentialism. I conclude
that a mechanistic and computational understanding provides a more comprehensive and empirically
grounded framework for modelling and representation in the mind sciences.
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Resumen: Este artículo examina la explicación inferencialista de la representación científica de Mauri-
cio Suárez a la luz de avances recientes en neurociencia e inteligencia artificial (NeuroAI). Aunque
aporta valiosas perspectivas pragmáticas, sostengo que es insuficiente para captar la naturaleza dinámica,
computacional y biológica de las representaciones neuronales. Apoyado en el enfoque mecanicista, fun-
cionalista y representacionalista (MFR) y en hallazgos empíricos, sostengo que no son meras entidades
abstractas, sino que están encarnadas en propiedades físicas y funcionales de los sistemas neuronales.
Cuestiono argumentos contra la necesidad y suficiencia de similitud e isomorfismo, destacando trans-
formaciones computacionales, roles funcionales y direccionalidad del procesamiento que configuran
contenido. El modelo Hodgkin-Huxley y el neurocomputacionalismo con redes neuronales artificiales
apoyan el MFR y desafían el inferencialismo de Suárez. Concluyo que una comprensión mecanicista y
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ciencias de la mente.
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Neural representations: A Mechanistic Challenge to Suárez’s Inferential Conception

1. Introduction

For many years, the goal of cognitive science has been to unravel the complex mecha-
nisms underlying intelligent behavior. Recently, artificial intelligence (AI), particularly
artificial neural networks (ANNs), has ushered in a new era of computational mod-
eling in neuroscience to achieve this goal. This development has led to the rise of a
field known as NeuroAI (Zador et al., 2023), which utilizes ANNs to simulate and
understand brain computations underlying cognitive abilities. However, the philo-
sophical foundations of modeling and representation in NeuroAI remain debated,
despite strong empirical evidence supporting certain claims.

As we will see in sections III and V, one of those claims is that neural rep-
resentations1 are regularly observed, manipulated, and measured by experimental
neuroscientists and computer scientists working in AI (Tootell et al., 1988; Lewis and
Kristan, 1998; Matsumato and Komatsu, 2005; Liu et al., 2012; Spillman, 2014; Shi et al.,
2023; Johnston and Fusi 2023; Courellis, Minxha, Cardenas, et al. 2024). Additionally,
there are philosophical reasons to argue that these representations are not mere the-
oretical postulates (Artiga, 2023; Piccinini, 2020; Ramsey, 2007; Poldrack, 2021; Shea
2018).

In his recent book, Inference and Representation: A Study in Modeling Science
(2024), hereafter IR, Mauricio Suárez proposes an inferentialist account of scientific
representation, emphasizing the pragmatic use of representations in scientific practice
and their role in enabling inferences. Suárez provides valuable insights into the na-
ture of representation across various natural and social sciences, exemplified through
modeling practices in economics (Phillips-Newlyn machine), ecology (Lotka-Volterra
model), astrophysics (models of stellar structure), and the kinetic theory of gases
(billiard models). However, the applicability of this inferential account to neural repre-
sentations in NeuroAI warrants further scrutiny. Suárez is explicit about the scope of
his project, stating, “I will assume from the start that the aim of any account of scientific
representation is to understand modeling practice... The inferential conception... is,
I submit, the best account of representation for the purposes of understanding the
practice of modeling in science” (Suárez 2024, p. 4). His focus is therefore on what
I termed imposed representations: public, socially constructed artifacts like diagrams,
equations, and scale models created by scientists for specific inferential purposes (This
point is elaborated further at the end of this introduction).

Although IR never claims to explain neural representation, the book does offer
a general theory of scientific representation that is explicitly presented as an alternative
to similarity- and isomorphism-based accounts. In a charitable spirit, I therefore treat
Suárez’s view as a candidate for extension to the neural domain and ask a conditional
question: were the inferential conception applied to neural systems, would it illuminate the

1 To be more precise, a neural representation, for the purposes of this article, is defined as a
pattern of activity in a neural system (the vehicle) that systematically co-varies with a feature of the
environment, the organism's body, or an abstract problem space (the content). Crucially, this pattern
of activity must be used by other parts of the organism's cognitive architecture to guide behavior or
drive further computations. The central philosophical debate, which this article addresses, concerns the
nature of the relationship between the vehicle and its content, and what properties are necessary for it to
successfully perform its functional role. For clarity, this article will adhere to the following terminology:
“intrinsic neural representation” refers to the biological patterns of activity within a nervous system that
carry content. The “MFR account” or “mechanistic models” refer to the scientific and philosophical
theories developed by researchers to explain these intrinsic phenomena.
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representational capacities that neuroscientists actually measure and manipulate? My answer
is negative, and it is negative precisely because IR express a theory that denies that
structural similarity or isomorphism plays any necessary explanatory role. In other
words, my objective could be seen as exploring the possibility of extending Suárez's
analysis beyond its intended applications.

Empirical work shows that many canonical neural codes—retinotopic, tono-
topic and somatotopic maps, hippocampal place cells, grid cells, head-direction cells,
etc.—traffic in stable, topologically preserved correspondences between neural activity
and stimulus space (Poldrack 2021). These are not optional conveniences but mech-
anistic pre-conditions for fast, computation-ready inference by the organism itself, as
stressed by mechanistic–functionalist and representationalist accounts of cognition
(MFR).

Extending Suárez’s inferentialist programme to the neural domain is not a
category mistake but a standard test of theoretical scope. If a general account of scientific
representation cannot accommodate the most intensively studied and mechanistically
characterised representational system we know—the mammalian brain—its claim to
general practice for modeling science is weakened. Hence I examine, conditional on
that extension, whether the denial of structural similarity and isomorphism could still
sustain explanatory power.

Recent empirical work indicates that it cannot. Large-scale Neuropixels record-
ings show that accurate navigation collapseswhen the stable, hexagonal phase relations
among grid-cell modules are transiently disrupted; animals behave as if spatial content
has vanished, despite all downstream decision circuitry remaining intact (Vollan et
al., 2025). Similarly, one-shot formation of entorhinal maps in novel environments
depends on fixed correspondences between visual landmarks and grid-cell firing
phases, establishing a veridical mapping after a single exposure (Wen et al., 2024).
These findings reveal that what carries content for the organism is the maintained
topological homology between neural activity and external metric space—a relation
the inferentialist view declares explanatorily irrelevant.

A complementary body of work on hippocampal replay deepens the point.
Hippocampal networks “compose” new spatial policies offline by binding grid-derived
vectors into fresh conjunctive codes; on re-entry to the environment, rodents act opti-
mally without any additional learning (Bakermans et al., 2025). Computational analyses
and multi-area recordings converge on the interpretation that zero-shot generalisation
is possible only because upstream codes preserve structural isomorphism, allowing re-
play to recombine positions as manipulable vectors (Johnston and Fusi, 2023; Courellis
et al., 2024). If those structural correspondences are erased or decorrelated, predictive
sweeps and behavioural transfer both fail.

Taken together, these data vindicate the core mechanistic–functionalist–
representational (MFR) thesis: neural vehicles must instantiate similarity or isomor-
phism relations—often dynamically enforced—to be usable by the system that gener-
ates them (Piccinini, 2020). Because Suárez’s account treats such relations as neither
necessary nor sufficient, its explanatory resources evaporate precisely where structural
mapping is demonstrably indispensable. The MFR framework, by contrast, recog-
nises similarity and isomorphism as contingent but frequently obligatory constraints
within a full causal-mechanistic explanation; it therefore succeeds where the inferential
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conception stalls.
Therefore, this article aims to critically examine Suárez´s inferential account

of scientific representation in light of recent advancements in neuroscience and AI,
particularly within the framework of the mechanistic, functionalist, and represen-
tationalist (MFR) account of cognition. I argue that while Suárez´s account offers
valuable insights into the pragmatic use of representations in scientific models, it falls
short in fully capturing the dynamic, computational, and biological nature of neural
representations.

Empirical research has identified symmetry (isomorphism) and universality
(similarity) as fundamental principles in understanding neural representations (See,
section III and IV). Symmetry denotes the invariance and stability of these representa-
tions when subjected to certain transformations, ensuring consistent processing across
different contexts. Universality implies that common computational principles might
underlie cognitive processes across diverse systems—both natural and artificial—and
species. This suggests that neural representations are governed by shared structural
and functional properties, facilitating a unified understanding of cognition across dif-
ferent domains (Sanborn, Shewmake, Olshausen, and Hillar, 2023; Courellis, Minxha,
Cardenas, et al. 2024).

Drawing upon the MFR account and empirical findings from recent studies, I
propose that Suárez´s arguments against the necessity and sufficiency of similarity
and isomorphism in our representational practices do not extend to the domain of
neural representation.

Neural representations are not merely abstract entities used for inference, but
are embodied in the physical and functional properties of neural systems (and even
artificial systems). I highlight the role of computational transformations, functional
roles, and the inherent directionality of neural processing in shaping representational
content.

Furthermore, I examine how the Hodgkin-Huxley model and the field of neu-
rocomputationalism, which utilize artificial neural networks (ANNs) to model brain
computations, provide empirical support for theMFR account and challenge the poten-
tial extension Suárez´s inferentialist account to the domain of neural representations
(neuroscience).

Through a detailed analysis of the relevant literature and a critical evaluation
of Suárez´s arguments, this article aims to contribute to the ongoing dialogue between
philosophy and neuroscience regarding the nature of representation and its role in
understanding cognition (Baker, Lansdell, and Kording 2022). I ultimately argue that
a mechanistic, computational understanding of neural representation offers a more
comprehensive and empirically grounded framework for understandingmodeling and
scientific representation than Suárez´s inferential account, particularly in the context
of NeuroAI. Suárez´s inferentialist account focuses on how representations enable
practical inferences in the context of science inquiry. According to Suárez, represen-
tations do not need to maintain a similarity or isomorphism relationship with what
they represent; their value lies in their utility for generating valid inferences. Suárez´s
own formulation makes the point explicit: once a source possesses representational
force toward a target and affords the “specific inferential capacities” that let compe-
tent agents draw surrogate conclusions, it already counts as a representation, because
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“neither representational force nor inferential capacity is committed to any means of
representation”.

Structural likeness can certainly enhance a model’s epistemic virtues—Suárez
grants that isomorphism or similarity “in form are the means of the representations
with which we are working” and may underwrite accuracy—but they remain optional
embellishments, not part of what makes A represent B. Hence my claim stands: on
Suárez’s inferential conception a representation need not preserve similarity or iso-
morphism; its value, qua representation, lies in enabling the right inferences. This
stance contrasts with the MFR perspective, which holds that neural representations
are intrinsically linked to the physical and functional properties of target objects. The
critical point is that the brain´s method of representation differs fundamentally from
that of other cognitive agents, such as scientists. Therefore, it is essential to seekmodels
that most accurately capture how brains build models. In my view, only the MFR
account can achieve this.

Computational and mechanistic models in neuroscience, such as the Hodgkin-
Huxley model, have demonstrated how the MFR account is the most viable strategy or
solution to understanding neural components, neural representations, computational
transformations and their specific functional roles. These models not only replicate the
observable behavior of neurons, but also provide a mechanistic understanding of the
underlying processes. I argue that Suárez´s inferentialist account is insufficient to fully
explain neural representations due to its emphasis on pragmatic use over intrinsic
properties. Neural representations are not mere abstractions for inference; they are
embodied in the physical and functional properties of neural systems.

Central to this article is the distinction between intrinsic representations, arising
naturally within biological systems (autogenic), and imposed representations, intention-
ally constructed by human agents for scientific purposes. This distinction critically
informs my argument that neural representations require fundamentally different
explanatory frameworks, such as MFR, distinct from inferential conceptions empha-
sizing pragmatic inferential utility. Imposed representations are public, artefactual
representational tools intentionally constructed by cognitive agents—most notably,
scientists—for the purposes of reasoning, prediction, and communication. This cate-
gory includes maps, diagrams, mathematical equations, and scale models, such as the
Phillips-Newlyn machine or the blueprints for the Forth Rail Bridge. Their representa-
tional force is established through pragmatic and social conventions, and their value
lies in their utility for enabling competent users to draw surrogate inferences about a
target system. Suárez's inferential conception, as detailed in IR, provides a powerful
and nuanced account of this type of representation, focusing rightly on the “practice
of modeling in science”.

In contrast, intrinsic representations are autogenic (self-generating). They are
not constructed by an external agent but arise from the inherent causal and functional
architecture of a system, such as a nervous system or a sophisticated artificial network.
Neural representations—like retinotopic maps or place cell activity—are paradigm
examples. They do not represent something for the organism in the way a map does for
a user; rather, they represent information for other downstream neural mechanismswithin
the system. Their representational content and directionality are not determined by
social convention but by their specific causal-mechanistic role in guiding the system's
adaptive behavior. It is this class of representation that the Mechanistic, Functionalist,
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and Representationalist (MFR) account seeks to explain. Therefore, this article argues
that these two types of representation operate under fundamentally different con-
straints. Suárez's arguments against the necessity of similarity and isomorphism are
compelling for the flexible, pragmatic domain of imposed scientific models. However,
I contend that for intrinsic neural representations, structural correspondence is often
not an optional “means” of representation but a mechanistic necessity—a prerequisite
for the system to perform computations and generate inferences efficiently and reliably.
Consequently, extending the inferential account beyond its intended domain reveals
its limitations, and highlights why the MFR framework offers a more complete and
empirically grounded explanation for the nature of representation in the sciences of
the mind.

This distinction allows me to precisely frame my argument. I do not claim that
Suárez's account fails on its own terms. In fact, Suárez himself appears to set aside
the domain of intrinsic representation. As he notes, “Neither should we require that a
theory of scientific representation be able to explain how humans have evolved the
capacity to generate representations, or mental images of the world; although this is an
independently interesting issue” (Suárez 2003, p. 226). This article takes up precisely
that “independently interesting issue”. I argue that the intrinsic representations that
constitute our evolved cognitive capacities operate under a different set of constraints—
mechanistic, computational, and biological—that are not fully captured by a purely
inferentialist framework. Therefore, our critique is not that Suárez's theory is wrong,
but that it is necessarily incomplete. A full account of representation in the sciences of
the mind requires a complementary framework, like the MFR account, that can explain
the foundational, intrinsic representations upon which the imposed models of scien-
tific practice are ultimately built. Before analyzing Suárez's specific arguments against
substantive accounts, it is crucial to first situate his entire project within a broader
theory of representation. An anonymous reviewer helpfully directed my attention
to the work of Callender and Cohen (2006), whose framework reveals a fundamen-
tal limitation in Suárez's approach. Their central claim is that “there is no special
problem about scientific representation”; rather, scientific representation is a species
of representation in general, that is, mental representations. Following a “General
Gricean” strategy, they argue that all non-fundamental forms of representation—such
as diagrams, artworks, and scientific models—are derivative. Their ability to represent
is inherited from a more fundamental class of representations, which are typically
identified with the mental states (intentions, beliefs) of their users . As they put it,
the philosophical action lies not in explaining the derivative cases, but in providing
a metaphysical account of the fundamental bearers of content. The representational
power of any non-mental object, from a stop sign to a scientific model, is constituted
by “a stipulation, together with an underlying theory of representation for mental
states” (Callender and Cohen 2006, p. 78).

Viewed through this lens, Suárez's inferential conception is a detailed and
valuable pragmatic analysis of how a community uses a specific class of derivative
representations (imposed models). However, by explicitly setting aside the question
of how humans evolved the capacity for mental representation, Suárez brackets off
the very foundation from which the models he studies derive their representational
power. His core concept of “representational force”, for example, is left as a primitive.
From a General Gricean perspective, this “force” is precisely the intentionality of the
user's mental states, which Suárez’s theory declines to explain. This makes his account
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philosophically incomplete: it describes the pragmatics of using representations but
cannot explain what makes them representational in the first place.

This critique provides a powerful justification for my project. TheMFR account,
in direct contrast to Suárez's approach, tackles the problem of fundamental representa-
tion head-on. It aims to provide a naturalistic, mechanistic explanation of the intrinsic
neural representations that form the physical basis of the mental states that ground all
other forms of representation. Therefore, the MFR framework is not merely a theory
for a different, “subpersonal” domain; it is a theory for the foundational domain of
cognition that makes the imposed, inferential practices of science possible. Suárez's
attempt to isolate the practice of modeling from its cognitive-neural foundations is
thus ultimately untenable from a robustly naturalistic perspective. With this foun-
dational critique in place, we now turn to how the specific constraints of intrinsic
representations clash with Suárez's arguments against structural correspondence.

For the sake of clarity and precision, my analysis will adhere to a distinction
between three different levels of analysis, a distinction helpfully suggested by an
anonymous reviewer. It is crucial to separate: (i) Meta-scientific conceptions, which
are philosophical frameworks that describe and evaluate scientific practice. Both
Suárez’s inferentialism and the MFR account operate primarily at this level. (ii)
Scientific theories and models, which are the specific representational tools created
by scientists to explain and predict phenomena (e.g., the Hodgkin-Huxley model of
the action potential). (iii) Real-world mechanisms, functions, and representations,
which are the phenomena in the world that scientists study (e.g., the actual flow of ions
across a neuron’smembrane). This article’s central argument operates by analyzing the
relationship between these levels. I contend that Suárez’s meta-scientific conception
(i) provides an inadequate account of the scientific practice of neuroscience because
it mischaracterizes the essential relationship that neuroscientists aim to establish
between their scientific models (ii) and the real neural mechanisms (iii) they target.
Specifically, I argue that in neuroscience, this relationship must be one of mechanistic
correspondence, a feature that Suárez’s inferentialism deems non-essential. The MFR
framework (i), I propose, offers a more faithful meta-scientific account of this specific
scientific practice.

2. Suárez’s inferentialist account of representation

Mauricio Suárez, in his book IR, traces the genealogy of what he terms the “modeling
attitude”, a stance toward scientific work and discovery that emerged prominently in
the nineteenth century. This modeling attitude emphasizes the creation and use of
models as central to scientific inquiry, distinguishing it from earlier or even later periods
where models were not as systematically utilized or philosophically scrutinized.

The “modeling attitude” has its roots in the scientific practices and philosoph-
ical reflections of the late nineteenth century. Suárez identifies two main schools
contributing to its development: the British school, led by figures like James Clerk
Maxwell and William Thomson (Lord Kelvin), and the German-speaking school, rep-
resented by Heinrich Hertz or Ludwig Boltzmann. These schools, though historically
related, evolved in different contexts and contributed distinct insights into the role
and nature of models in science.
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Figure 1: Members of the two schools or traditions in the philosophy of modeling.

Centered around Maxwell and Thomson, the British school emphasized the
use of analogical reasoning and concrete physical models to understand phenomena,
particularly in the realm of electrodynamics. This school laid the groundwork for
a methodological approach that deeply integrated modeling into scientific practice.
Hertz and Boltzmann, influenced by Helmholtz, advanced a more abstract and theoret-
ical form of modeling. Their work contributed significantly to the Bildtheorie (theory of
images), which framed models as formal frameworks with internal structures defined
by principles and consequences, emphasizing the plurality of representations and
their pragmatic utility in scientific inquiry

Contrary to the standard narrative found in philosophy of science textbooks,
the thematic history of the discipline is not a simple linear progression from the
received view or syntactic view to the semantic view. Suárez’s exploration of the
“modeling attitude” (Suárez 2024, p. 20) reveals its enduring influence on scientific
methodology. He argues that the principles established by nineteenth-century mod-
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elers, such as reasoning by analogy, methodological abstractionism, and the use of
formal frameworks, continue to underpin contemporary scientific practices. More
importantly, these principles predate the semantic view and the focus on modeling
practice that emerged in the 1970s.

The “modeling attitude” enable scientists to create models that are not merely
descriptive, but also predictive and explanatory, providing a robust means of under-
standing complex phenomena. In framing his inferentialist account of representation,
Suárez builds upon the historical modeling attitude to propose a deflationary account
of scientific representation. This account focuses on the pragmatic use of models
to facilitate inferences about target phenomena without focusing into metaphysical
questions of reference or denotation. According to Suárez, a true representation is
one that allows a competent and informed agent to draw accurate inferences from
the model to the target, emphasizing the practical and contextual aspects of scientific
modeling. This is what Suarez says explicitly:

On the inferential conception, a true representation is defined as a representation of a
target B by some source A that allows a competent and informed agent to draw surrogate
inferences fromA to only true conclusions about B. Since the kind and degree of competence
as well as the required level of information are essentially dependent not just on the source
and the target and their properties but also on the context of inquiry, the expression true
model is revealed to be a mere façon de parler: a model (a scientific representation in
general), by itself, cannot be true or false. It can be said to be so only in a derivative sense,
one that depends on its context of use and application. (Suárez 2024, p. 15).

Mauricio Suárez champions an inferential conception of representation. This
conception is characterized by its deflationary and pragmatist stance (Suarez 2024,
p. 227), rejecting the notion that representation is solely grounded in substantive
relations like similarity or isomorphism. Instead, Suárez emphasizes the pragmatic
use of representations in scientific practice and their role in enabling inferences. Suarez
uses a terminology that is now standard in scientific representation and modeling
studies. It distinguishes between source and target. The source is the object or entity
that performs the representational work while the target is the represented object or
entity. In addition, he distinguishes between the means and the constituent of scientific
representation (Suarez 2024, p. 6). Suárez elaborates this definition in more detail:

Throughout the book, I shall define the terms source and target as follows. For any pair {X,
Y}: if X represents Y, then X is the source and Y the target of the representation. Or, in other
words, X is the representational source and Y its representational target. This definition is
very minimal. The sources of models can be concrete objects, abstract or fictional entities,
mathematical equations or structures, conceptual archetypes, or sets of sentences in some
natural or artificial language. The targets can be concrete, abstract, or fictional systems and
their states, objects, and/or properties, processes, or experimental data. There is nothing in
the properties of these objects or their relations that I suppose is required for them to fulfill
their roles; the only requirement on any source-target pair {X, Y} is that “X represents Y”
is true. Finally, I make no definitional assumptions as to what makes such a statement true
either since its truth makers are likely to be many and varied (Suárez 2024, p. 47).

This explanation provides a minimalist yet flexible framework for understand-
ing representational relationships in the context of scientific practice. However, as will
be argued throughout this article, this perspective may be insufficient to fully capture
the dynamic, computational, and biological nature of neural representations within
the realm of NeuroAI. Suarez in IR posits two necessary conditions for representation:
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representational force and inferential capacity. Regarding the representational force,
the model or source must be directed towards the target, established through its in-
tended use and community practices. This force is a socially established convention
maintained by normative practices within a scientific community. Elsewhere, Suarez
(2003) argues that neither isomorphism nor similarity can ground the representation
relation for models and they have a requirement of directionality: “models are about
their targets, but targets are not about models” (Frigg and Nguyen, 2017 p. 55). In
other words, sources or models are free and independent of any strict relationship with
targets and are exclusively due to vertical (within models) or horizontal (between
models) inferential rules.

Suárez argues that representation is fundamentally about drawing inferences
from a source (the model) to gain knowledge about a target (the phenomenon being
modeled). He views models as tools for conveying information, not necessarily requir-
ing perfect accuracy or mirroring of reality. Inferential capacity means that the model
must enable informative inferences about the target, going beyond mere denotation.
Suárez elaborates:

The source must be the right kind to allow informative inference regarding the target. The
condition does not require the inferences to be infallible or to be true conclusions about B,
but there is an important clause that requires them to reveal aspects of B that do not follow
from the mere existence of a representational relation. There must be other informative
inferences about B that can be drawn from A for “A represents B” to be true (2024, p. 9).

This perspective implies that representation is not merely about having a one-
to-one correspondence between the model (A) and the target (B). Instead, it is about
the capacity of the model to allow the user to draw relevant and novel inferences about
the target. These inferences should go beyond what is immediately obvious from the
representational relationship itself. This criterion underscores the importance of the
model’s utility in scientific practice, where the goal is often to uncover new insights and
generate understanding that extends beyond the initial representation. Suárez´s view
challenges notions of representation that emphasize similarity or isomorphism. By
focusing on inferential capacity, he shifts the emphasis to the pragmatic aspects of how
models function within scientific inquiry. This approach aligns with a deflationary
and pragmatist view of representation, where the success of a model is measured by
its ability to produce useful and informative inferences rather than by its adherence to
a strict representational accuracy.

Moreover, Suárez’s emphasis on the informative nature of inferences brings at-
tention to the epistemic values of models. It highlights how models serve as epistemic
tools that aid scientists in exploring and understanding phenomena. This perspective
resonates with the broader shift in the philosophy of science towards understanding
scientific models as instruments of inquiry rather than mere depictions of reality.
Suárez emphasizes the pragmatic dimension of representation, positing that the util-
ity of a representation lies in its ability to function within scientific practice. This
pragmatic approach contrasts with traditional views that prioritize resemblance or
structural similarity between the model and the target. Instead, Suárez argues that the
effectiveness of a representation is determined by how well it facilitates the generation
of inferences about the target phenomenon of interest.

Suárez in IR introduces the inferential conception as follows: “The inferential
conception of representation [inf]: A represents B only if (i) A’s representational force
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is B and (ii) A has specific inferential capacities toward B” [Suárez, (2024), p. 166].
Thisminimal account is designed to address the limitations ofmore substantive

accounts, such as similarity or isomorphism theories, which impose stronger conditions
that often lead to objections (more on this in section IV). By contrast, the inferential
conception remains flexible and context-sensitive, allowing it to apply to various
representational devices and practices. Suárez emphasizes the minimalist nature of
the inferential conception, arguing that it provides only the pragmatic conditions
for representation without imposing overly stringent requirements. This makes the
framework flexible and applicable across various scientific domains. The contextual
nature of inferential capacities means their effectiveness depends on the expertise and
knowledge of the agents using the models, thereby grounding representation in the
practices of the scientific community.

The inferential conception of representation offers a pragmatic, flexible, and
minimalist framework that emphasizes the functional role ofmodels in generating infor-
mative inferences. By focusing on representational force and inferential capacity, this
conception provides a robust foundation for understanding scientific representation
across diverse contexts. However, the research programme in scientific representation
and modeling studies carried out by Suarez with his inferential conception of repre-
sentation is not able to account for neural representations as we will see in the next
section.

3. The MFR account

Before proceeding, it is essential to define what constitutes a representation within the
MFR framework. This account moves beyond purely logical or pragmatic definitions
to offer a set of mechanistic and functional conditions. Drawing on the work of
Piccinini (2020), Shea (2018), and others, a neural state functions as an intrinsic
structural representation if it meets four key criteria: a) Structural correspondence: The
vehicle (the neural state) must be isomorphic or similar to its target in a way that
preserves relevant structural relations; b) Causal linkage: The representation is typically
caused by the target it represents, at least during a formative or learning period; c)
Decouplability: The system must be able to use the representation to guide behavior
even in the absence of the target (e.g., in memory or planning); d) Functional role:
The representation must be used by downstream consumer systems in a way that is
specific to its content to guide behavior adaptively. These conditions are not merely
philosophical stipulations but form a testable, mechanistic hypothesis about how
nervous systems process information to control behavior.

The Mechanistic, Functionalist, and Representationalist (MFR) account offers
a robust framework for understanding biological cognition, positing that cognitive
capacities are explained by multilevel neurocognitive mechanisms that perform neural
computations over neural representations (Piccinini, 2020). To appreciate its challenge
to the scope of Suárez’s inferentialism, we must first address a foundational concept in
the philosophy of mind: the distinction between the personal and subpersonal levels.
While Suárez’s account clearly operates at the personal level of scientific practice, I
argue that this level lacks the explanatory autonomy required to insulate it from a
mechanistic analysis. Allow me to be explicit. It is accurate that the terms “neuro”
or “neural” do not appear in IR, and Suárez does not establish the modeling and
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representational practices in neuroscience as his intended target. My point is not that
Suárez should have written a chapter on neurons; it is that the book itself presents
the inferential conception as a domain-neutral theory of scientific representation,
if not why then present different cases where it is useful (e.g. economics, ecology,
astrophysics. . . ), so neural codes supply a legitimate stress-test. Suárez insists that the
two-factor schema—representational force plus specific inferential capacities—are “the
two most general necessary conditions one can provide for cognitive representation” (Suárez
2024, p. 160) adding that “no more general necessary conditions are forthcoming” (Suárez p.
161). He underscores this breadth again when defining source and target: “Anything
can in principle play the role of the source or the target . . . Our only assumption is that ‘X
represents Y’ is true”(Suárez 2024, p. 85). Given those explicit aspirations, neural
representations—central in contemporary cognitive neuroscience—fall squarely inside
the theory’s intended scope. My strategy, therefore, is not a category error: I am
taking Suárez at his own word and asking whether the two-condition recipe remains
explanatorily adequate when confronted with well-characterised neural mapping
systems (retinotopy, grid cells, etc.). The evidence suggests it does not, because
those systems rely on structural correspondences that the inferential account declares
inessential. If Suárez wishes to restrict the theory to imposed representations alone
(the specific sense in which I employ the term “imposed representations” is clarified
below but this issue was discussed in further detail at the end of the Introduction),
that is perfectly coherent—but it would amount to relinquishing the general claim
quoted above, and it would leave the mechanistic-functionalist-representationalist
(MFR) framework as the better guide for intrinsically generated representations.

A potential objection to this strategy is that it conflates two explanatorily
autonomous domains, a mistake rooted in ignoring the well-established philosophical
distinction between the personal and subpersonal levels of explanation. This article
takes a different approach. Rather than accepting this distinction as a given and
thereby insulating Suárez's account from this analysis, I will argue that the distinction
itself is scientifically and philosophically tenuous. Recent work in the philosophy
of cognitive science suggests that a naturalistic approach leads to a “flattened” view
of the mind, where personal and subpersonal processes are seen as co-contributing
factors in a single, integrated causal architecture (Rupert 2023). Therefore, to fully
justify my cross-domain comparison and demonstrate why the MFR account is not
merely a theory for a separate domain but a fundamental framework for cognition, it is
necessary to first critically assess the distinction that supposedly keeps these domains
apart.

As introduced by Dennett (1969), the personal level typically refers to expla-
nations that attribute states like beliefs, desires, and intentions to the person as a
whole, often involving consciousness and rationalization. The subpersonal level, in
contrast, involves explanations in terms of unconscious, mechanistic processes within
the person's cognitive architecture, such as the computational steps in early vision
described by Marr (1982). Many philosophers have used this distinction to create an
“isolationist” dialectic, where facts about the subpersonal level are deemed irrelevant
to questions about the personal level.

However, a consistent naturalism challenges the utility of this distinction. As
Rupert (2023) argues, a “flattened view” of themind, where there is no robust personal
level, is more consistent with the practice of contemporary cognitive science. Scientific
practice often relies on mixed models where states traditionally considered personal
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(e.g., explicit attitudes) and subpersonal (e.g., implicit attitudes) are treated as co-
contributing causes on a single explanatory plane. For example, Perugini's (2005)
structural equation model of behavior shows explicit and implicit attitudes as nodes
in a single causal network, with no ontological or explanatory “layering” separating
them. In such models, the distinction between levels “plays no role in accounting for
the data”.

This “flattened” perspective reframes my central argument. The MFR account
is not merely a theory for a separate, isolated subpersonal domain. Instead, it describes
the fundamental, mechanistic nature of the cognitive architecture that produces all rep-
resentations, including the “imposed” scientific models that are the subject of Suárez's
inferentialism. The very capacity of a scientist to use a model for surrogate reasoning
depends on an underlying cognitive system whose representational capacities are
grounded in mechanisms best explained by the MFR account. Therefore, my critique
is not a category error. I argue that the philosophical firewall between the personal
and the subpersonal is scientifically untenable. Consequently, an account of scientific
representation cannot be fully divorced from the mechanistic principles that govern
the cognitive systems doing the representing. The features highlighted by the MFR
account, such as structural correspondence and computational transformation, are
not confined to a “lower” level but are foundational to the brain's ability to model the
world—the very activity that Suárez seeks to characterize.

Central to the MFR account is the idea that neural representations are not
merely abstract, inferential or fictional entities, but are grounded in the physical and
mechanistic properties of the brain. Piccinini (2020) argues that for something to
count as a representation, it must have semantic content and an appropriate functional
role, which involves serving as a “stand in” for X to guide behavior with respect to X.

This functional role allows for internal states to guide behavior even when
their targets are not immediately present, emphasizing the isomomorphism between
internal states and their targets, causal connections from targets to internal states, the
possibility of decoupling internal states from their targets, and a role in action control
(p. 261). This functional perspective highlights the importance of understanding
how neural representations are used by the brain to generate adaptive behaviors.
The MFR account recognizes the multi-level nature of neurocognitive mechanisms,
where different levels of organization (molecular, cellular, network) contribute to
cognitive processes. Coelho Mollo and Vernazzani (2023) argue that this multi-level
organization gives rise to a diversity of representational formats, each with its own
computational profile determined by the constraints on the transformations that the
underlying neural vehicles can undergo. This diversity of formats allows for flexibility
and adaptability in neural representation, enabling the brain to process a wide range
of information and generate appropriate responses.

A key aspect of the MFR account is the emphasis on computational transforma-
tions as the basis for understanding representational content. This view shifts the focus
from the static relationship between a representation and its target to the dynamic
processes that manipulate and transform representations within neural networks. This
view aligns with the broader mechanistic perspective in neuroscience, which seeks
to explain cognitive phenomena by identifying the underlying neural mechanisms
and processes, neural representations being one of these instances (Johnston and Fusi
2023).
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The contrast between the MFR account and Suarez´s inferential conception re-
veals fundamental differences in how representations are understood within NeuroAI
and standard theorizing in philosophy of science. The MFR account, with its emphasis
on multilevel mechanisms and computational transformations, provides a detailed
framework for explaining how the brain processes information and generates behavior.
It highlights the importance of understanding the physical and functional properties
of neural representations, offering a comprehensive view of cognitive processes.

On the other hand, Suarez´s inferential conception offers a pragmatic approach
to scientific representation, focusing on the utility of representations in generating
inferences and advancing knowledge. This approach is particularly valuable in the
context of scientific modeling, where the goal is often to develop tools that can predict
and explain phenomena, rather than to uncover the exact mechanisms underlying
these phenomena. The comparative analysis between the MFR account and Suarez´s
inferential conception continues to elucidate key points of divergence in the under-
standing of representations within NeuroAI. While Suarez´s approach underscores the
inferential utility of representations, the MFR account dives deep into the mechanistic
underpinnings, offering a more granular view of how representations are instantiated
and utilized within neural circuits.

This distinction is critical when considering the practical applications in Neu-
roAI, where the aim is to model and replicate neural processes. NeuroAI modeling
often adopts a mechanistic perspective, striving to emulate the structure and function
of biological neural networks. For instance, convolutional neural networks (CNNs) in
AI are designed based on hierarchical layers that mimic the visual processing pathways
in the primate brain. Yamins and DiCarlo (2016) illustrate that CNNs not only share
architectural similarities with the primate visual system, but also exhibit comparable
hierarchical and adaptive processing capabilities.

In NeuroAI, it is crucial to distinguish between imposed and intrinsic repre-
sentational activities. I believe that this distinction of mine is necessary to understand
the modeling and representations made by certain cognitive agents, such as human
beings engaged in scientific practice, as opposed to the modeling and representation
generated by certain natural systems such as the nervous system and in particular
the brain. Imposed representational activity includes scientific, and aesthetic repre-
sentations that are deliberately constructed by humans to serve specific purposes.
Intrinsic representational activity refers to natural representations that occur inher-
ently within biological systems, such as neural and biological representations, but
also even in artificial systems. These are not externally imposed, but arise from the
inherent properties and functions of the neural systems (or even artificial systems)
themselves. Neural representations, for instance, involve the brain´s intrinsic ability
to encode and process information about the external world. The brain is constantly
producing and generating world models that allow the organism to interact efficiently
with its environment, otherwise it would not be able to survive.

In other words, entities or biological organisms with intrinsic representational
activity, thanks to their nervous systems, have to verifiably represent their environ-
ment in order to perform functions and objectives necessary for survival, such as
development, growth and interaction with peers. If they did not faithfully represent
the disparity of behavioural stimuli of others, objects, space, events... to distinguish
potential mates from enemies, friends, etc. an organism with intrinsic representational
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activity would not survive.
Piccinini (2020) argues that nervous systems perform complex control func-

tions in a computationally tractable way, which necessitates processing structural
representations (remember that structural representation includes four elements: a)
isomorphism between an internal state and their targets, b) causal connection from
at least some targets and their targets, c) the possibility of some internal states to be
decoupled from their targets and d) and a role in action control. Although some infer-
entialist and deflationary authors question this, the dominant mechanistic literature—
Piccinini’s four-factor schema allied with recent philosophical-neuroscientific defences
by Shea 2018, Artiga 2023 and Baker, Lansdell and Kording 2022—still treats iso-
morphism, causal linkage, decouplability and action-control as the most exact and
explanatorily fruitful definition of structural representation). Nervous systems need
to integrate information from various sensory modalities, such as shapes, colors, dis-
tances, sounds, and chemical signals, to construct internal models that guide the
organism´s behavior. These models/representations enable the organism to make fine
distinctions between similar stimuli, such as differentiating prey from predators or
family members from potential mates, which are critical for survival. Piccinini (2020,
p. 264) presents the following argument to introduce how nervous systems needs
structural representations:

The Argument from Complex Control

1. Nervous systems perform complex control functions in a computationally tractable way.

2. Performing complex control functions in a computationally tractable way

requires processing structural representations.

——————————————————————————————————

Therefore, nervous systems process structural representations.

This argument underlines the necessity for neural systems to develop internal
models that can process and represent complex environmental information accurately
and efficiently. Organisms with nervous systems that cannot perform these functions
in a computationally tractable way would not survive, as they would be unable to
respond appropriately to their environment.

But there is another type of argument I would like to apply to defend the MFR
account, this one of my own making. Neuroscience is both a basic and a translational
science, meaning that its findings serve to increase our curiosity and knowledge about
how the brain works but at the same time it seeks to design more precise models
to quantitatively test mechanistic hypotheses of the brain and obtain experimentally
testable predictions with the ultimate goal of refining our understanding of neural
systems in health and disease. In other words, neuroscience has a clinical dimension.
If the models it tries to build are not empirically validated in a verifiable way, people
suffering from neuropsychiatric disorders, people suffering from strokes, people suf-
fering from head injuries, people suffering from migraines, and so on and so forth. . .
they would have no hope.

In order to effectively understand and explain the nervous system in both
healthy and diseased states, any explanatory framework must adhere to the principle
of verisimilitude. This principle demands that models and theories closely approxi-
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mate reality, ensuring that representations accurately reflect the complex nature of
neural processes. The MFR (Mechanistic, Functionalist, and Representationalist) ac-
count satisfies this requirement by emphasizing the intrinsic representational activity
within nervous systems, providing a detailed and realistic depiction of how neural
mechanisms function.

The MFR account not only accounts for the structural and functional aspects of
neural representations but also captures their representational nature. By incorporat-
ing verisimilitude, it ensures that models of neural processes are not only theoretically
sound but also practically applicable. This approach allows for a more nuanced un-
derstanding of both normal and pathological states of the nervous system, making it a
powerful framework for advancing research in neuroscience and NeuroAI. The MFR
account´s commitment to verisimilitude enhances its capacity to offer insights that are
both empirically robust and theoretically coherent.

While the debate between inferentialist and mechanistic accounts of represen-
tation can seem abstract, it has profound methodological implications when grounded
in the practical goals of a specific scientific field. Neuroscience is unique in its dual role
as both a basic science aimed at understanding and a translational science aimed at
clinical intervention. This dual role imposes a powerful constraint on its models that I
term the clinical imperative: for a model of a neural system to be useful in diagnosing,
treating, or curing a pathology, it must accurately represent the underlying causal
mechanism responsible for that pathology. Consider the goal of developing treatments
for disorders rooted in representational dysfunction, such as spatial neglect following
a parietal lobe stroke or disorganized thought in schizophrenia. A purely inferential
model, which treats the underlying mechanism as a “black box” and is valued only for
its predictive output, offers no clear path for intervention. A clinician cannot prescribe
a drug to target an “inferential capacity” or perform surgery on a “representational
force”. Instead, effective intervention requires a model that correctly identifies the
relevant mechanistic components—such as a specific neural circuit, a population of
neurons, a receptor type, or a neurotransmitter pathway—and how their interactions
produce the cognitive function in question.

This practical requirement for mechanistic accuracy strongly favors the MFR
account for explaining intrinsic neural systems. The MFR framework, by its very
nature, is committed to achieving high mechanistic verisimilitude—a term I use here
to denote the accurate representation of the causal structure of the target mechanism.
Its primary goal is to “open the black box” and detail the real causal structure that
produces a phenomenon.

The inferential conception, however, is agnostic about underlying mechanisms.
It values models for their predictive utility, allowing for “felicitous falsehoods” and
instrumentally useful idealizations that may bear no resemblance to the actual causal
story. While this is a powerful approach for imposed models in many sciences, it falls
short of the demands of a science that must physically interact with its object of study
to restore function. A pharmacologist designing a drug needs a model that accurately
reflects the targeted molecular pathway, not an “as-if” story that happens to yield
good predictions.

This is why the MFR account fulfills what I call the principle of verisimilitude:
The argument from the principle of verisimilitude
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1. To effectively explain and intervene upon the nervous system in both healthy and
diseased states, any explanatory framework must produce models with high mechanistic
verisimilitude—that is, models that accurately capture the causal structure of the target
neural mechanisms.

2. The MFR account is inherently oriented towards achieving mechanistic verisimilitude
by identifying and modeling the real components and interactions within a system. The
inferential conception, in contrast, is indifferent to mechanistic accuracy, prioritizing only
inferential power.

——————————————————————————————————

Therefore, the MFR account provides a framework that satisfies the core explanatory and
practical demands of neuroscience, making it a more robust and adequate framework for
understanding intrinsic neural representations than the inferential conception

The argument from the principle of versesimilitude underlines a trivial and
straightforward idea. If neuroscientists did not investigate neural representations as
they emerge naturally, there would be no possibility to clinically treat patients suffering
from neuropsychiatric disorders and to satisfy scientific curiosity about the functioning
of the brain. But not all authors are happywith the viewof representation offered by the
MRF account. For example, Carrillo and Knuuttila (2023) present a significant critique
of the MFR account, focusing on its application to abstract models in neuroscience,
such as the Hodgkin-Huxley model (Hodgkin and Huxley 1939, Hodgkin, Huxley
and Katz 1951). They argue that the MFR account struggles with abstract models
that lack detailed mechanistic descriptions. The Hodgkin-Huxley model, for instance,
does not provide a granular account of ion transport mechanisms but rather uses
mathematical abstractions to describe the action potentials of neurons. Therefore, the
mechanistic account struggles with abstract models like Hodgkin-Huxley, which lack
detailed descriptions of ion transport mechanisms.

TheHodgkin-Huxleymodel is a mathematical model that describes how action
potentials in neurons are initiated and propagated. It was developed in the 1950s by
Alan Hodgkin and Andrew Huxley, who conducted experiments on the squid giant
axon. The model focuses on the changes in conductance of ion channels (sodium
and potassium) in the neuron´s membrane during an action potential. The main
components of the model are: a) membrane potential: This is the electrical potential
difference across the neuron´s membrane. It changes as ions move in and out of
the cell through ion channels. b) ion channels: These are proteins in the membrane
that allow specific ions to pass through. The model focuses on sodium (Na+) and
potassium (K+) channels, c) conductance: This refers to the ease with which ions can
flow through a channel. In the model, conductance is represented by variables that
change over time and finally d) gating variables: These variables control the opening
and closing of ion channels. They are influenced by the membrane potential and time.

The problem is that Carrillo and Knuuttila (2023) believe that one of the
canonical mechanistic models, such as Hodgkin-Huxley model, is not a clear example
of MFR account and that because it is an abstract model it does not mechanistically
explain the nerve impulse of nerve cells. I disagree. The Hodgkin-Huxley model,
a seminal example of mechanistic model in neuroscience, provides a mechanistic
explanation of the action potential by describing changes in a neural membrane´s
voltage conductivity. Initially, the model omitted lower-level mechanistic details
about how changes in membrane permeability arise, both because these details were
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unknown and to afford the model greater generality. While some have described the
model as non-explanatory or non-mechanistic, it is more accurately characterized as a
mechanism sketch that evolved into a mechanism schema. This means it explains the
phenomenon of the action potential at one mechanistic level (membrane conductivity
changes) while abstracting away from lower mechanistic levels (specific ion channel
activities). Thus, the Hodgkin-Huxley model exemplifies a mechanistic approach
by providing a detailed, albeit abstract, account of the processes underlying action
potentials.

According to Aizawa and Headley (2022), abduction—or inference to the best
explanation—is a legitimate strategy for justifying compositional claims when direct
observation is limited, as was true for Hodgkin and Huxley, who in the early1950s
lacked directmolecular knowledge of ion channels and their subcomponents (Hodgkin
andHuxley1952). TheHodgkin-Huxleymodel, despite its abstract nature, successfully
uses abduction to infer the roles of ion fluxes in generating action potentials. This
approach demonstrates that even abstract models can provide mechanistic insights
by focusing on the most relevant causal factors, supporting the validity of the MFR
account. Aizawa and Headley (2022) emphasize that the Hodgkin-Huxley model
demonstrates the successful use of abduction in mechanistic explanations, highlight-
ing that abstraction focuses on the most relevant causal factors at different levels of
organization.

Neurocomputationalism, a paradigm prevalent in the cognitive sciences, posits
that the human brain processes information through computation. This concept is
embraced by NeuroAI, which acknowledges that the human brain generates represen-
tationswith informational content through computational processes. The development
of high-performing deep convolutional neural networks (DCNNs) has been a break-
through in this field. These models have demonstrated impressive accuracy in object
recognition tasks and have been shown to align well with neural responses in the
primate ventral visual stream. This alignment suggests that these models capture
some of the essential mechanisms underlying object recognition in the brain (Kar and
DiCarlo 2023). We could say that what they capture is how intrinsic representations
are generated, whether in natural systems (brains) or in artificial systems (artificial
neural networks).

4. Demarcating the domains: Why Suárez’s arguments
highlight the need for the MFR account

In response to Mauricio Suárez´s inferential conception of representation presented
in IR—which emphasizes the pragmatic and inferential roles of models in scientific
practice while rejecting representations as a substantive relation based on similarity or
isomorphism—the MFR account advances a comprehensive alternative framework.
Let me explain. In IR Suárez presents the inferential conception as a universal account
of scientific representation, intended to supersede similarity and isomorphism-based
views across the board . The book nowhere restricts its remit to imposed (i.e. arte-
factual, researcher-constructed) models; on the contrary, Suárez invites application
to any representational practice. Once that invitation is accepted, neural representa-
tion becomes a crucial test-bed. Neurophysiology shows that cognition depends on
vehicles whose structure preserves key topological relations to what they represent—
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retinotopic, tonotopic, place- and grid-cell codes are canonical cases. The MFR frame-
work systematises this evidence: structural correspondence is often obligatory for a
representation to play its causal-computational role in the organism (Piccinini 2020).
Hence an account that declares similarity/isomorphism explanatorily idle is empir-
ically inadequate for the very paradigm of intrinsic representation. Since IR theory
makes broad claims, the neural examples discussed in MFR present challenges to the
theory´s general application. Alternatively, if we consider a division of theoretical
labor—where intrinsic representations follow MFR-type constraints while imposed
representations align with inferential-pragmatic norms—the apparent conflict dimin-
ishes, though this approach necessarily narrows the inferential conception´s domain.
In either case, MFR remains relevant to Suárez´s proposal by highlighting important
boundary conditions that any comprehensive account should acknowledge This sec-
tion will outline the key points of this reponse. Suárez presents five key arguments
against the substantive theories of representation, specifically targeting similarity
([sim]) and isomorphism ([iso]) as inadequate for explaining scientific representa-
tion. Here is a concise summary of these arguments based on his detailed critique (I
refer the reader to IR to see these arguments):

1. The Argument from Variety
Similarity and isomorphism do not apply to the full range of scientific repre-

sentations. Suárez observes that scientific practice involves a wide variety of repre-
sentational devices, each with different means of representation (e.g. scale, analogue,
mathematical, etc.). This empirical fact shows that relying solely on [sim] or [iso] is
too restrictive and cannot account for the diversity of representational tools used in
science. For example, while physical models like toy bridges might rely on similarity,
abstract mathematical models often do not fit neatly into similarity or isomorphism
frameworks.

“The argument from variety: [sim], [iso] do not apply to all representational devices”
[Suárez, (2024), p. 104].

2. The Logical Argument
Similarity and isomorphism lack the logical properties necessary for repre-

sentation. Representation, as a concept, is non-reflexive, non-symmetrical, and non-
transitive. However, similarity is reflexive and symmetrical, and isomorphism is
reflexive, symmetrical, and transitive. This fundamental mismatch means that neither
[sim] nor [iso] can adequately capture the logical nature of representation. The logi-
cal argument states that representation is inherently directional (non-symmetrical),
whereas similarity and isomorphism are logically symmetric and reflexive. For im-
posed models, Suárez correctly concludes that an additional condition, which he calls
“representational force” is required to supply this directionality.

“The logical argument: [sim], [iso] do not possess the logical properties of representation”
[Suárez, (2024), p. 110].

3. The Argument from Misrepresentation
Similarity and isomorphism cannot account for misrepresentation. Scientific

models often misrepresent their targets through idealization, abstraction, or simplifica-
tion. [Sim] and [iso] theories struggle to explain these inaccuracies because they imply
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a one-to-one correspondence between model and target. For instance, Newtonian
mechanics provides an approximately correct representation of the solar system but is
not isomorphic to the actual motions of celestial bodies when relativistic effects are
considered.

“The argument from misrepresentation: [sim], [iso] do not make room for the ubiquitous
phenomena of mistargeting and/or inaccuracy” [Suárez, (2024), p. 113].

4. The Nonnecessity Argument
Similarity and isomorphismare not necessary for representation. Suárez argues

that representation can occur even when similarity or isomorphism is absent. For
example, equations and mathematical models represent physical phenomena despite
lacking any physical resemblance to their targets. The relevant properties that define
representation do not always include similarity or isomorphism.

“The nonnecessity argument: [sim], [iso] are not necessary for representation. Representa-
tion can obtain even if [sim], [iso] fail” [Suárez, (2024), p. 115].

5. The Nonsufficiency Argument
Similarity and isomorphism are not sufficient for representation. Even if sim-

ilarity or isomorphism exists, it does not guarantee representation. Representation
requires a directional and intentional relationship where the source leads to an un-
derstanding of the target. This directionality is not captured by [sim] or [iso], which
merely describe structural or relational similarities without explaining how they func-
tion as representations.

“The nonsufficiency argument: [sim], [iso] are not sufficient for representation. Represen-
tation may fail to obtain even if [sim], [iso] hold” [Suárez, (2024), p. 117].

However, despite the consistency of these arguments to criticise what Suarez
considers to be a reductive naturalism, or in other words to find a sufficient and
necessary representational relationship between any source and the target, these
arguments do not work for a special class of representations: neural representations.
Neural representations are autogenic, i.e. they are not created by scientists. They are
the result of evolutionary history and selection processes that have resulted in neural
systems that faithfully represent the surrounding environment, and those organisms
that are equipped with complicated and complex nervous systems can generate a
model of the world in order to adapt and survive.

In order to understand neural representations, the scientist has to look for
models as close as possible to how these neural representations actually represent. In
fact, the MFR account is the most valid strategy for explaining and understanding
neural representations. The MFR account counters The Argument from Variety by
acknowledging that representational diversity is expected due to the multi-level nature
of neural mechanisms. For instance, the visual processing pathways in the brain, such
as the differences between V1 and IT in vision, exhibit diverse computational profiles
that explain varied representational formats (Coelho Mollo and Vernazzani 2023).
Representation is a key concept in neuroscience and artificial intelligence (NeuroAI).
Representations are internal states or processes within a system (biological or artificial)
that are about something else. The content of a representation is what it is about. The
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physical state or process that carries the content is the vehicle. In addition to content
and vehicle, representations can also be characterized by their format.

Coelho Mollo and Vernazzani (2023) propose a computational view of rep-
resentational formats, arguing that formats are individuated by the computational
profiles of vehicles. The computational profile refers to the set of constraints that deter-
mine the computational transformations a vehicle can undergo. This view emphasizes
that the standard of success for a theory of representational formats is not how well
the formats fit our pre-theoretic expectations, but rather the epistemic value it has
in guiding research. Thus, for intrinsic representations, variety is not an argument
against a foundational role for structural correspondence; rather, it is evidence of
how different forms of structural correspondence are mechanistically optimized for
different cognitive functions.

TheMFR account resolves this problem for intrinsic representations by ground-
ing directionality not in an abstract convention but in the physical, causal architecture
of the neural system. Information processing in the brain is an inherently directional
causal chain, flowing from sensory transducers through successive computational
stages to motor effectors. The isomorphism in a retinotopic map, for example, is not
a standalone logical relation to which directionality must be added; it is a structural
property that is created and maintained by this directional causal process. The arrow
of representation is an empirical fact of the mechanism's causal flow, not a separable
pragmatic posit. Relying on public representations like maps as analogies for this
process can indeed be misleading, precisely because it obscures this fusion of structure
and causality inherent in neural systems. The MFR account responds to The Logical
Argument by arguing that the use of public representations, such as maps and pictures,
as analogies for internal representations (neural representations) can be misleading.
Relying on public representations as analogies can oversimplify the complexity of inter-
nal representations. Retinotopic (Benson and Winawer 2018) and tonotopic (Langers
and van Dijk 2011) maps are orderly mappings of sensory information in the brain. In
a retinotopic map, the spatial arrangement of neurons in the visual cortex corresponds
to the spatial arrangement of light on the retina. Similarly, in a tonotopic map, the
arrangement of neurons in the auditory cortex corresponds to the frequency of sound
waves.

These representations could be seen as mirroring reality in the sense that they
preserve spatial or frequency relationships present in the external stimuli. And the
same can be said about face cells (Kanwisher et al. 1997) and place cells (Moser, Kropff
and Moser 2008), head direction cells (Taube et al. 1990) and concept cells (Quiroga,
(2005). These cells and retinotopic or tonotopic maps can be seen as examples of
neural representations that exhibit a degree of isomorphism with the external world,
enabling efficient processing and invariant representation of sensory information. Lots
of experimental evidence within NeuroAI show that neural representations, such
as retinotopic and tonotopic maps, often exhibit invariant, similar, and isomorphic
characteristics relative to the objects they represent (Johnston and Fusi 2023; Courellis,
Minxha, Cardenas, et al. 2024).

Numerous studies in NeuroAI (Acosta et al. 2023) demonstrate that neural
representations, such as retinotopic and tonotopic maps, consistently exhibit invariant,
similar, and isomorphic properties relative to the objects they represent. These rep-
resentations maintain a structured correspondence with sensory inputs, preserving
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spatial and frequency relationships, and enabling accurate and efficient information
processing. This evidence underscores the significance of structural mappings in neu-
ral systems, highlighting their role in ensuring that the brain´s internal representations
mirror external stimuli´s spatial and frequency characteristics

In relation to The Argument from Misrepresentation, Suárez correctly argues that
imposed scientific models are often useful because they are idealizations or “felicitous
falsehoods” that misrepresent their targets. A strict isomorphism or similarity account
struggles to explain how an inaccurate model can still be a representation. For an
organism's intrinsic representations, however, significant misrepresentation is not a
useful idealization but a catastrophic failure. The brain's models must be veridical
enough to guide survival-critical actions . An organism that misrepresents the lo-
cation of a predator or a food source will not survive long. In the MFR framework,
misrepresentation is treated as a computational error or a sign of pathology, which the
brain actively works to minimize through error-correction mechanisms like predictive
coding. While a scientist can choose to use an inaccurate model for pragmatic reasons,
the biological constraints on the nervous system demand a high degree of fidelity.
Thus, the argument from misrepresentation, which is powerful for imposed models,
highlights a key constraint—the need for veridicality—that governs intrinsic neural
representations.

The MFR account would likely argue that Suárez´s The Nonnecessity Argument
while valid in some contexts, does not undermine the importance of similarity and iso-
morphism in understanding representational formats within nervous systems which
are a instance of intrinsic representational activity. In this view, similarity and isomor-
phism, while not strictly necessary for representation in a general sense, play a crucial
role in determining the computational profile of vehicles and, consequently, the format
of representation in neural representations. For example, the spatial arrangement of
place cells in the hippocampus, while not a perfect map, exhibits a degree of isomor-
phism with the spatial environment that facilitates efficient navigation and spatial
reasoning (Moser, Kropff and Moser 2008; Courellis, Minxha, Cardenas, et al. 2024).

Suárez’s argument that similarity and isomorphism are not sufficient for rep-
resentation rests on the observation that representations can fail even when these
relations hold. However, the representations he refers to are part of the category of
imposed representational activity—that is, representations intentionally created by
scientists—and not the special kind of neural representations that are part of the cat-
egory of intrinsic or autogenic representational activity, which are not intentionally
created but generated by natural systems such as nervous systems. The necessity of
isomorphism is not derived from a definition of representation, but from the functional
demands on the biological mechanism itself. It is a contingent, empirical necessity for
the system to perform its job. Finally, Suárez argues that similarity or isomorphism is
not sufficient for representation, as an accidental correspondence does not establish a
representational link; directionality and intended use are missing. The MFR account
fully agrees that a standalone isomorphism is insufficient. However, within a neural
mechanism, the isomorphism is never standalone. It is one integral component of a
functional system that also fulfills the other necessary conditions for representation: a
causal link to the target, the ability to be decoupled from the target for use in memory
and planning, and a determinate functional role in controlling action . The sufficiency
is provided by the entire integrated mechanism. The structural correspondence is
not accidental; it is a feature that the mechanism has evolved to create and maintain
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precisely because it is essential for the system to fulfill its adaptive function. The
sufficiency is therefore mechanistic and causal, not merely logical or conventional The
MFR account would respond to The Nonsufficiency Argument by saying that similarity
and isomorphism are essential for creating mappings that ensure consistency and
reliability in representation. The spatial arrangement of neurons in the visual cortex
corresponds to the spatial arrangement of light on the retina.

This structural mapping is crucial for maintaining the integrity of visual in-
formation as it is processed by the brain. If we assume that, ceteris paribus, the com-
putational process of representation functions correctly and faithfully represents the
surrounding environment, then the organism can carry out the functions that con-
tribute to its growth, development, and interaction with the environment. In short, it
can survive. To put it simply, without isomorphic representation, an organism would
not understand its reality. A simple example may help illustrate this point. If an
organism with a visual sensory modality that creates representations of stimuli is
presented with a rapidly approaching stimulus, but represents this stimulus using an
inferentialist account as suggested by Suárez, it could apply a framework of inferences
that, given the organism´s learned experiences, would not lead it to represent the
stimulus as a predator. If the approaching stimulus is indeed a predator, the organism
would not have time to react and escape before being eaten.

Suárez's inferential conception is explicitly a theory of imposed
representations—the models scientists build. My analysis, however, evaluates
it against the standards of intrinsic representations—the neural processes that
constitute cognition. A reviewer has rightly questioned whether this constitutes
a “displacement among levels of analysis”, given that Suárez's theory was never
intended to be a theory of neural mechanisms. I argue that this comparison is not a
category error but a necessary philosophical stress-test. All public on-fundamental
forms of representation are derivative. Their capacity to represent is inherited from
a more fundamental class of representations, which are the mental states of their
users. The scientific models Suárez analyzes are therefore derivative representations,
enabled by the fundamental, intrinsic representations occurring in the brains of
scientists. From this perspective, a theory of derivative representation cannot be
philosophically self-sufficient if its core principles contradict the nature of the
fundamental representations that ground it. Suárez's theory, by bracketing off the
cognitive and neural origins of representation as an “independently interesting issue”,
isolates itself from its own foundations. This project is to bridge that gap. I challenge
the inferential conception not by misapplying it, but by evaluating its coherence in
light of the mechanistic realities of the fundamental representational system—the
brain.

5. Concluding remarks

In this article, I have critically examined Mauricio Suárez’s inferentialist account of
scientific representation in light of recent advancements in NeuroAI. While Suárez pro-
vides valuable insights into the pragmatic use of representations in scientific practice,
his account cannot be extended to capture the dynamic, computational and biological
nature of neural representations. Just as Jorge Luis Borges´s story “On Exactitude in
Science” illustrates the futility of creating a one-to-onemap that becomes indistinguish-
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able from reality itself, the MFR account recognizes that representations are inherently
selective, but accurate, abstractions. Unlike the empire in Borges´s tale that collapses
under the weight of its perfectly accurate yet impractical map, neural representations
encode essential information efficiently without mirroring reality in exhaustive detail,
however, the reality they represent is faithfully reflected. Through a detailed analysis,
I have argued that neural representations are not merely abstract entities used for
inference but are deeply rooted in the physical and functional properties of nervous
systems. The MFR account offers a more comprehensive framework for explaining
and understanding neural representations. This account emphasizes the importance
of computational transformations and functional roles of neural processing. Empirical
evidence from neuroscience, such as the Hodgkin-Huxley model, supports the view
that neural representations are embodied in the mechanistic and functional archi-
tecture of the brain. Furthermore, I have addressed Suárez’s arguments against the
necessity and sufficiency of similarity and isomorphism for representation. While
Suárez argues that these structural relations are neither necessary nor sufficient, I
have demonstrated that in the context of neural representations, similarity and isomor-
phism play a crucial role in ensuring accurate and efficient information processing.
The MFR account acknowledges the diversity of representational formats and the
adaptive nature of neural representations, providing a robust response to Suárez’s
critiques. To sum up, a mechanistic and computational understanding of neural rep-
resentation, as advocated by the MFR account, offers a more empirically grounded
and comprehensive framework for modeling and representation in the sciences of
the mind than Suárez’s inferentialist account. This approach not only aligns with
recent empirical findings, but also provides deeper insights into the nature of cognitive
processes and the functioning of nervous systems.
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