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ABSTRACT 

Drayson (2017) explores the relationship between predictive and modular architec-
tures of the mind and concludes that predictive architectures must exhibit some kind of 
modularity. To do so, Drayson discusses two requirements of predictive architectures 
that seem to conflict with modular architectures: the continuity claim, the idea that cogni-
tion and perception rest on a continuum, and the non-isolation claim, the idea that no 
brain processes are informationally isolated. Although these features seem to repel modu-
lar architectures, Drayson finds reasons for reconciliation. In this paper, I explain such 
reasons and provide difficulties in Drayson’s argumentation. I conclude that there is no 
place for reconciliations. 
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RESUMEN 

Drayson (2017) argumenta que las arquitecturas predictivas deben exhibir algún ti-
po de modularidad. Para ello, analiza dos requisitos de las arquitecturas predictivas: la 
afirmación de continuidad, la idea de que la cognición y la percepción se ubican en un 
continuo, y la afirmación de no aislamiento, la idea de que ningún proceso cerebral está 
informativamente aislado. Aunque estas características parecen repeler las arquitecturas 
modulares, Drayson encuentra razones para la reconciliación. En este artículo, explico di-
chas razones y proporciono serias dificultades a su argumentación. Concluyo que no hay 
lugar para reconciliaciones. 
 
PALABRAS CLAVE: arquitectura predictiva; arquitectura modular; afirmación de continuidad; afirma-
ción de no aislamiento; penetrabilidad cognitiva; manta Markov. 

 
 

The type of architecture that rules mental processes is under dis-
cussion. Traditionally, modular architectures have posited compact, 
mandatory, functionally isolated and unidirectional (bottom-up) pro-
cessing mainly for perceptual (and linguistic) systems. This functional in-
dependence suggests that perceptual systems passively receive and 
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process external information alien to the operations performed by other 
systems [Fodor (1983); Pylyshyn (1999); Raftopoulos (2009); Firestone 
and Scholl (2016)]. In contrast, predictive architectures advocate flexible, 
plastic, functionally integrated and bi-directional (bottom-up and top-
down) processing for all mental systems. Predictive architectures repre-
sent a significant departure from traditional thinking, viewing perception 
not as a passive receptor of information but as an active inferential pro-
cess. The idea is that higher-level cognitive systems actively anticipate the 
information processed by lower levels. This is achieved through some 
form of Bayesian inference — the higher brain generates hypotheses 
about how the world is, and these hypotheses are adjusted based on in-
coming information. Predictive feedback is then compared with the in-
coming information to refine the feedback signals and generate the most 
suitable representation of the incoming signal [Hohwy (2013); Friston 
(2010); Clark (2013)]. In recent years, predictive architectures have been 
gaining popularity, thus challenging the predominance of modular archi-
tectures. Many believe that a paradigm shift is underway. 

Although there seem to be no reasons for reconciling these differ-
ent accounts, Drayson (2017) argues that the tension could be relieved. 
This tension arises for two reasons. Firstly, predictive architectures as-
sume that perception and cognition are part of a continuum implement-
ed by the same type of mechanisms, challenging the idea proposed by 
modular architectures that there is a clear boundary between perception 
and cognition (the continuity claim). Secondly, according to predictive 
architectures, no process in the brain operates in isolation; thus, the 
modular assumption that some parts of perceptual processing are func-
tionally isolated from cognitive processing is no longer tenable (the non-
isolation claim). Drayson (2017) questions these two claims and argues 
that predictive architectures can coexist with some form of modularity. 
This paper rejects this view. I argue that predictive and modular architec-
tures are antagonists — there cannot be modules in predictive architec-
tures. The paper is structured as follows: The first section clarifies the 
notion of modularity that Drayson refers to. The subsequent section 
provides a brief explanation of predictive architectures. Next, I explain 
Drayson’s conciliatory proposal by highlighting the two claims (continui-
ty and non-isolation) widely adopted by predictive architectures. Then, I 
present some challenges to Drayson’s argument and conclude that there 
is no room for reconciliation — if minds are predictive, they cannot be 
modular. 
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I. DIFFERENT NOTIONS OF MODULE 
 

In “Modularity of Mind”, Fodor (1983) introduced an influential 
view on human mind functioning. Fodor suggests that low-level periph-
eral systems, such as perceptual and linguistic systems, operate as modu-
lar entities, while high-level perception and cognitive systems do not. 
Fodor outlines up to nine properties of modular systems, but in later 
writings [Fodor (2000)], he emphasises informational encapsulation as 
the fundamental property of modularity. A system is informationally en-
capsulated when it operates independently, without relying on infor-
mation processed by other systems, particularly higher-level cognitive 
systems. 

Since their initial formulation, modular architectures have under-
gone various transformations. For example, proponents of massive 
modularity [Carruthers (2006); Sperber (2001); Barrett and Kurzban 
(2006)] argue that the entire human mind, including high-level cognitive 
systems, is modular. However, the thesis of massive modularity requires 
a notion of module different from that proposed by Fodor. Despite sig-
nificant explanatory costs, proponents of massive modularity (mostly 
evolutionary psychologists) are forced to reject or at least weaken infor-
mational encapsulation as a robust criterion for modularity [Coltheart 
(1999); Carruthers (2006)].1 

Beyond the differences between these versions (essentially, but not 
only, in the scope of the notion of module), there is an essential com-
mon element — both coincide that a system is modular to the extent 
that its processes are functionally specialized and, therefore, relatively 
isolated from the processes carried out by other systems. This relaxed 
notion of module is, following Burnston and Cohen (2015), p. 132, the 
one embraced by Drayson [see also Beni (2022)]. This characterization 
allows for some overlap between modules — if necessary, some infor-
mation can permeate between them —, and softens the informationally 
encapsulated criterion at the expense of weakening the explanatory force 
of the notion of module [see Stokes and Bergeron (2015)]. Indeed, the 
more unencapsulated a module is, the more it will need to compute the 
information processed by other modules, thus losing the explanatory pow-
er provided by modular impermeability2. However, even this more flexible 
characterization conflicts with predictive architectures — modules cannot 
accept that perception and cognition lie inseparably on a continuum (con-
tinuity claim) nor that any part of perceptual processing is functionally 
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isolated from high-level cognitive processing (non-isolation claim). This 
is precisely what predictive architectures suggest. 
 
 

II. PREDICTIVE BRAINS 
 

Predictive processing (PP) reverses traditional thinking by suggest-
ing that biological brains are not just passive receivers of sensory input 
but are constantly active and engaged in predicting sensory stimulation. 
According to predictive architectures, the brain continually generates 
top-down predictive models or representations of the world that consti-
tute predictions of how the world is [Rao and Ballard (1999); Lee and 
Mumford (2003); Hohwy (2013); Clark (2013); Friston (2010)]. These 
top-down predictions facilitate and accelerate perceptual processing by 
reducing the need to reconstruct the environment through exhaustive 
bottom-up analysis of incoming sensory information [Panichello et al. 
(2013), p. 4]. In other words, perceptual systems rely on prior probable 
representations stored in memory to adjust incoming sensory inputs, so 
perceiving the world consists of continuously elaborating estimations 
about how the world is. 

The perceptual brain is therefore continuously active, with cogni-
tive and sensory systems working jointly, interactively and concurrently 
to predict incoming sensory stimuli. Processes such as image segmenta-
tion, surface inference, figure-ground segregation, contour integration or 
object recognition do not progress in a purely bottom-up serial fashion 
but in continuous feedforward and feedback loops that simultaneously 
activate the entire hierarchical circuitry of the visual system. From this 
perspective, the brain continuously generates expectations and predic-
tions about the immediate future. In simple terms, brains are essentially 
prediction machines [Clark (2013)]. 

Importantly, PP is not a unified framework, as there is significant 
disagreement regarding the scope of its explanatory powers [Sims (2016), 
(2017)]. The range of explanations varies from some perceptual process-
es to some neurocognitive functions, all the way to encompassing all 
neurocognitive functions and even all biological self-organization [Sims 
(2017), pp. 4-5]. Despite this, predictive architectures coincide in two 
postulates. First, cognition and perception lie on a continuum (the conti-
nuity claim), and second, no process in the brain is functionally isolated 
(the non-isolation claim). These postulates seem incompatible with the 
existence of modules in the brain; however, Drayson claims to have 
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found a way for reconciliation. The following section examines Dray-
son’s compatibility arguments. 

 
 

III. DRAYSON’S ARGUMENTATION FOR COMPATIBILITY 
 

For Drayson (2017), the two crucial assumptions of predictive ar-
chitectures — the lack of boundaries between perception and cognition 
(the continuity claim) and the lack of informational and functional isola-
tion of perceptual processing (the non-isolation claim) — are compatible 
with modular architectures. Note that the two claims are closely related; 
if there are no boundaries between perception and cognition, then no 
part of perceptual processing is informationally or functionally isolated 
from higher-level cognitive processing and vice versa. Drayson, however, 
discusses the two claims separately.  
 

III. 1 The Continuity Claim 
 

When discussing the continuity claim — the idea that there is no 
sharp boundary between perception and cognition — Drayson provides 
two arguments for reconciliation. The first is that even though continuity 
involves no differences in Bayesian computational processes across the 
processing hierarchy (i.e., seeing an apple and thinking about the future in-
volve similar computational mechanisms), the brain can still be considered 
a hypothesis tester and modular at the same time. Drayson appeals to the 
level of description [p. 7], stating that a system can be considered modular 
or not, depending on the level of the grain employed to describe it. At the 
fine-grained level of description, seeing an apple and thinking about the fu-
ture are executed by the same kinds of computational mechanisms, where-
as at a coarse-grained level of description, seeing an apple and thinking 
about the future are not continuous. Thus, perception and cognition can 
be continuous in fine-grained details and discontinuous in coarser ones — 
it all depends on the level of description. Fundamentally, Drayson is refer-
ring, following Davies (1989), to coarse and fine-grained levels of descrip-
tion as functionally characterized. She argues as follows: 
 

modularity is a matter of grain: a computational system can be modular 
when viewed at one level of abstraction but not when viewed at another: 
continuity in the fine-grained details of the information-processing is 
compatible with discontinuity at a coarser-grained perspective” [Drayson 
(2017), p. 7].  
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Thus, predictive and modular architectures are not mutually exclusive 
since similar fine-grained mechanisms may originate distinct functional 
modules in a coarse-grained perspective.  

In the second argument Drayson argues that although the continui-
ty claim implies that perception and cognition are at both extremes of a 
spectrum, and most everyday processes fall in the middle (without clear 
boundaries of what counts as perception or cognition), there will always 
be perceptual but not cognitive cases at the lower end of the hierarchy 
and cognitive but not perceptual at the higher end (p. 7). This seems at 
odds with the idea that there are ultimately no fundamental differences 
between perception and cognition. 
 
III.2 The Non-Isolation Claim 
 

Roughly, the non-isolation claim suggests that there is no part of 
perceptual processing informationally and functionally isolated from 
cognitive processing. This is because priors affect each level in the pre-
dictive Bayesian hierarchy from the level above. Since there is no level in 
the hierarchy unaffected by the preceding level, predictive architectures 
must entail cognitive penetration of perception. Drayson presents two 
arguments to refute this conclusion. The first questions the type of cog-
nitive penetration implied by predictive architectures. Supporters of PP 
need to clarify the nature of cognitive states involved in cognitive pene-
tration, whether doxastic (conscious beliefs) or subdoxastic (unconscious 
information represented in the cognitive system) [see also MacPherson 
(2017)]. If cognitive penetration requires doxastic states, PP supporters 
have two options: either include doxastic states as the cognitive states in-
volved in predictions or question the real existence of such doxastic 
states, adopting an eliminativist approach [Dewhurst (2017)]. According 
to Drayson, these options do not leave much room for cognitive pene-
tration. Leaving aside the second option, Drayson seems reluctant to 
think that the type of top-down predictions suggested by PP involve 
doxastic states. 

The second argument relies on the logical property of transitivity. 
Predictive networks assume that each level is causally influenced by the 
level above: n+1 causally influences n, which in turn causally influences 
n-1, and so on. This, in principle, means that n+1 also influences n-1. 
However, Drayson argues this may not be the case, since the causal in-
fluence might only occur between correlative levels. Furthermore, the 
further apart the levels are in the hierarchy, the less causal influence there 
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will be between distant levels, implying some level of isolation for per-
ceptual processes. 

Next, I raise significant objections to these arguments. I argue that 
if the picture drawn by predictive architectures is correct, then the idea 
of a modular mind should be abandoned. 
 
 

IV. CONTRA-ARGUMENTATION: INCOMPATIBLE ARCHITECTURES 
 

At first glance, Drayson makes room for two seemingly antagonis-
tic approaches. However, there are additional reasons beyond those 
mentioned by Drayson that argue against reconciliation. For instance, if 
every part of the visual brain is subject to be modified by predictions, the 
idea of specialized functional modules becomes, at best, inconsistent. 
Furthermore, it is hard to reconcile the dynamic, active and plastic theory 
suggested by PP with the static, passive and constrained picture pro-
posed by modularity. Additionally, while predictive architectures are 
probabilistic-based and in lineage with connectionist models [Clark 
(2016); McClelland (2013)] modular architectures are non-probabilistic 
and reject connectionism [Fodor and Pylyshyn (1988); Bechtel and 
Abrahamsen (1991)]3. These reasons hinder reconciliation, but even set-
ting aside all this, Drayson’s arguments fail4.  
 
IV.1 Continuity at any Explanatory Level 
 

For the continuity claim, Drayson first holds that taking the fine-
grained details of the information processing, the continuity claim makes 
sense since perception and cognition are ruled by similar mechanisms. 
However, from a coarse-grained perspective, perception and cognition 
are easily differentiable and discontinuous. 

However, when PP supporters describe the computational mecha-
nisms that rule perception, action and cognition, they explicitly adopt 
both the fine-grained and the coarse-grained perspectives. When they 
claim that the brain operates according to Bayesian rules, they are explic-
itly connecting the underlying mechanism to its function; i.e., the func-
tion the system computes depends on how the predictive mechanism is 
neurologically implemented in the brain. Therefore, the variability of the 
fine-grained mechanisms suggested by predictive architectures, the delicate 
dance between top-down and bottom-up processing [Clark (2013), p. 9], has a 
counterpart in the functional coarse-grained explanation in the form of a 
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greater or lesser contribution of cognition in the attainment of a percep-
tual experience. All this means that to the extent that perception is con-
tinuously modulated by cognition, perception and cognition fall, at any 
explanatory level, on the same continuous, and hence the boundary be-
tween perception and cognition becomes highly imprecise. The central 
idea of PP that perception is, in an optimal combination, continuously 
framed by subjects’ cognitive background suggests that perception is 
continuous with cognition at any explanatory level — thinking about fu-
ture or past events, contemplating an artwork or seeing an apple only 
differ in the grades of intervention of top-down cognitive processes and 
bottom-up driving signals (arriving from sensory channels) to obtain one 
or another perceptual experience5.  

Furthermore, PP holds that top-down predictions are ubiquitous 
and do most of the perceptual work. But, if top-down effects are persis-
tent in the brain, and endogenous mechanisms such as attention, 
memory, beliefs or mood, are vital to predict the incoming input and ef-
ficiently represent environmental information, then the presence of spe-
cialized functional modules that only process incoming information 
makes no sense at any level of explanation. This being the case, we should 
consider our perceptual experience as modulated by cognition and inher-
ently joined to it. The coarse-grained level of explanation in predictive 
architectures indicates that perception alone cannot explain sensory in-
put and, therefore, there should be some kind of continuity between 
perception and cognition at any explanatory level. Predictive architec-
tures assert that the functional specialization posited by weak modular 
approaches is not an intrinsic property of any particular brain region but 
depends on bottom-up and top-down connections among different and 
varied brain areas [Friston and Price (2001), p. 275]. In short, if disconti-
nuity in modular accounts is established by postulating an exclusively 
bottom-up phase, and in predictive accounts no part of the brain is free 
from top-down generative processes, then, regarding the criteria of con-
tinuity, modular and predictive architectures are incompatible.  

Finally, if modularity depends on the grain of description, and 
modules only make sense at the coarse-grained level, then the mind will 
be modular only from our functional understanding of it. At this point, 
modules become useful only as functional talking about the mind. In 
contrast, PP shows not only that seeing an apple or thinking about the fu-
ture can be explained by appealing to similar fine-grained mechanisms, but 
also that the kind of phenomenal experience is characterised by the degree 
of predictive processing, the subsequent degree of prediction error 



Predictive Architectures Cannot Be Modular                                                 47 

 

teorema XLIII/3, 2024, pp. 39-62 

(marked by the degree of environmental uncertainty) and ultimately by 
the extent in which perception, action and cognition are mutually inter-
twined. Thus, while modules would, at most, make sense only at the 
coarser grain of description, where perception and cognition may be 
seen as functionally distinct, predictive architectures make sense in both 
the fine and coarse-grained levels of description without the need to ap-
peal to modules. Indeed, besides the underlying computational mecha-
nism, PP also describes the mechanism by which perceptual inputs are 
top-down predicted by prior knowledge stored in memory. Thus, the 
coarse-grained level appears in PP, rooted in the fine-grained level. Finally, 
if we want a cognitive architecture drawn on reliable data about structural, 
anatomical, neurophysiological and functional brain features, predictive ar-
chitectures provide all these data without resorting to modules6. 

The second argument considers both ends of the spectrum, where 
perception and cognition appear disjointed — insofar as there must be 
pure perceptual cases at the lower end of the hierarchy, a boundary be-
tween perception and cognition stands. One way to avoid this conclu-
sion is by considering a continuum where perception is so tainted by 
cognition that pure perception (the lower end of the spectrum) has very 
little (if any) relevance in our everyday lives. Indeed, one can consider a 
continuum where perception cannot be explained without the minimal in-
tervention of cognitive processes, a continuum where the lower end of the 
spectrum becomes, at least in real-world scenarios, an unlikely situation. 
Ultimately, if perceptual systems aim to allow organisms to respond adap-
tively to ecologically relevant stimuli, then the mediation of background 
stored knowledge becomes indispensable. This is partly because stimuli are 
not represented in a contextual vacuum, but are inextricably bound to in-
ternal (mental) and contextual (environmental) information. But this is 
also because of the informative vagueness of sensory inputs; the ambigu-
ity of incoming information forces us to rely on prior knowledge accu-
mulated throughout the evolutionary and developmental process to 
convert sensory energy into valuable information that guides behaviour 
[Lupyan (2015)]. 

One can consider non-natural cases such as the Müller-Lyer illusion 
(see Figure 1a), where one cannot stop seeing the lines as different even 
though knowing they are equal; i.e., the illusion persists even knowing 
that it is an illusion. This can turn it into a paradigmatic case of pure per-
ception (a prototypical case of the lower end of the spectrum) since prior 
knowledge does not interfere with the visual experience. These cases 
have been broadly used to argue for the modular nature of perceptual 
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systems [Fodor (1983); Pylyshyn (1999)], but appealing to the Muller-
Lyer illusion to show this is not very persuasive. Simply, from the fact 
that previous knowledge cannot dominate low-level processing in these 
circumstances, it does not follow that previous knowledge cannot influ-
ence or dominate low-level processing in other circumstances —
cognitive influence might not be so determinant in these cases [Prinz 
(2006); Ogilvie and Carruthers (2015)]. Furthermore, this can also be 
seen as a prominent case of cognitive penetration of low-level sensory 
processing. Perhaps the visual system is conditioned by the profound 
previous belief that the disposition of the wings indicates cues about 
depth and three-dimensionality (see Figure 1b)7. The visual system is, in 
this case, more prone to obey the deeply ingrained information of depth 
than the previous and less relevant information about the length of the 
lines [McCauley and Henrich (2006)]. Therefore, depending on how 
high-level the involved previous information is, this can be considered a 
case of top-down modulation, a particular case of weak cognitive pene-
tration even though the same top-down modulation recurrently facili-
tates true perception [Hohwy (2017), p. 78]. All this is consistent with 
the PP explanation of this and other persistent illusions. Lupyan (2015), 
for example, argues that 
 

[I]nsofar as the Müller-Lyer illusion arises from the visual system attempt-
ing to represent likely real-world sources, it would be maladaptive to undo 
one ‘illusion’ while breaking the rest of vision in the process. A bit of addi-
tional evidence in the form of training allows the system to reach a global-
ly optimal state, making accurate local predictions while maintaining 
globally optimal performance [Lupyan (2015), p. 558]. 

 
Thus, the illusion arises because the ambiguity of some artificial scenarios 
muddles visual systems forcing them to choose between hypotheses. In 
this case, the ambiguity is settled too early on, thus preventing the confir-
mation of high-level previous beliefs. This is not to say that high-level pro-
cessing is absent, but that such processing is not sufficiently tested, thus 
generating erroneous predictions. But again, only an extra bit of infor-
mation (e.g., smaller wings) or little visual training may be enough for the 
system to generate true perception [Rudel and Teuber (1963)].8 
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FIGURE 1A: Muller-Lyer illusion 

 

 
 

FIGURE 1B: Muller-Lyer illusion with extra three-dimensional information. 

 
Let me consider another possible objection. One can think of a 

newborn whose poor or null stored knowledge of the world prevents 
cognition from influencing perception, e.g., via categorization. If new-
borns perceive but do not categorize the world, then perception and 
cognition are (at least during our first steps) disconnected. Infants are, 
therefore, positioned at the lower end of the spectrum. But do babies 
have genuine perceptual experiences? Arguably, newborns initially per-
ceive a disorganized and meaningless amalgam of images, sounds or 
smells that over time become organized and gain meaning. Thus, if the 
low end of the spectrum (the supposedly pure perceptual stage) consists 
of this uninformative combination of sensory inputs, then that pristine 
perceptual experience is closer to being a mere raw sensation than genu-
ine perception. Indeed, studies show that infants can recognize voices, 
faces, or odours extremely early; raw sensations begin, therefore, also 
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very early, to be guided and modelled by memories and learned prior 
knowledge. The immense assortment of natural stimuli has compelled us 
to develop a plastic rather than rigid mental processing; in the natural 
world, stimuli are not simple lines of different lengths or idealized figures 
but rather a complex combination of different lines, colours, textures, 
meanings, categories and so on, whose processing requires a very diverse 
range of cognitive processes (sensory, emotional, cognitive and contex-
tual information). So, if modular architecture is bounded to cases of the 
lower end of the hierarchy, then it ends up being informationally sterile; 
modules will not be very informative after all. 
 
IV.2 There Are No Islands in the Brain: Transitivity and Markov Blankets 
 

The second attempt at reconciliation suggested by Drayson is to 
cast doubt on the non-isolation claim — the idea that perceptual pro-
cessing is not informationally and functionally isolated from high-level 
cognitive processing. The non-isolation claim is closely linked to the 
cognitive penetrability of perception. Proponents of the cognitive pene-
trability of perception state that the contents of perceptual experiences 
are influenced by high-level mental states (prominently, background 
knowledge, beliefs and memories). Now, since PP postulates that the 
brain generates top-down predictions to facilitate, guide and constrain 
the processing of incoming sensory input, the cognitive penetrability of 
perception should, according to PP postulates, be the norm. According 
to Drayson, however, it is far from clear that the kind of cognitive influ-
ence postulated by PP entails cognitive penetration in any relevant way. 
Questions such as whether cognitive influence should be exerted on late 
or early perceptual states, whether cognitive states should be beliefs or 
desires (doxastic states) or may also be just cognitive representations 
(sub-doxastic states), or whether the type of relationship that exerts the 
influence must be direct or indirect, have long been debated by philoso-
phers interested in these topics. 

The question is: what kind of cognitive states are the states involved 
in predictive architectures? One can consider a strong and a weak sense of 
cognitive states. The former refers to doxastic states — propositional at-
titudes like beliefs or desires accessible to consciousness and inferentially 
integrated. The latter refers to non-doxastic states — moods, emotions, 
types of personality, cognitive styles, education, learning or expectations, 
which are non-accessible to subjects’ consciousness. In my view, PP ac-
commodates both notions. For example, it has been reported that desir-
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ing an object makes it look closer [Balcetis & Dunning (2010)] or that 
believing that someone is upset with you can make you to perceive that 
person’s facial features as particularly irritated [Siegel (2012)]. These are 
cases where conscious beliefs and desires (doxastic states) modulate per-
ception. Therefore, even considering that genuine cognition is exhausted 
by doxastic states, there are compelling cases where doxastic states con-
tribute to the constitution of perceptual experiences. However, perhaps a 
cognitive state need not be accessible to consciousness and inferentially 
integrated to be considered a genuine cognitive state. In most situations, 
we perceptually reconstruct the world without needing high-level beliefs 
(in the doxastic sense). The reported cases where moods, emotions, 
types of personality, cognitive styles, education, learning, or expectations 
influence perception are countless. For example, the expectation of mo-
tion alters motion perception [Sterzer et al. (2008)], negative thoughts 
make the world look darker [Banerjee et al. (2012)], or types of personali-
ty, cognitive styles and moods can make us perceive stimuli more vividly, 
oriented in different ways or even sized, shaped and coloured differently 
in different circumstances or different situations [Harber et al. (2011); 
Stefanucci and Geuss (2009); Levin and Banaji (2006)]9. Finally, if the 
core of PP is the minimization of the overall prediction error, and this is 
achieved by a mechanism that collects the information processed from 
the different sensory modalities, prior experiences, expectations, stored 
knowledge or beliefs, then this information will be necessary to guide 
processing at the lower levels [Lupyan (2015), p. 547]. Thus, the doubts 
raised by Drayson about the nature of the cognitive part of the equation 
are unfounded since much of the evidence shows that the two senses of 
cognition (doxastic and non-doxastic) can influence perception. At this 
point, the relevance of the very notion of cognitive penetration could be 
called into question, since if cognition always penetrates perception, and 
there is no point where cognition ends and perception begins, then what 
is the point of questioning cognitive penetration? Recently, Block (2023) 
has argued that even if there is cognitive penetration, it is possible to de-
fend a joint between perception and cognition, although such a joint is 
not marked in architectural terms, but in representational ones [for con-
trary positions see Quilty-Dunn (2020) and Green (2023)]. But, even 
though it is omnipresent, it is also possible to talk about cognitive pene-
tration in terms of degrees to which cognition affects perception. From 
the point of view of PP, the degree to which high-level predictions are 
used to adjust lower-level representations [Lupyan (2015)]. Be that as it 
may, there is little doubt about the existence of cognitive penetration, 
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whether it is relevant or not will ultimately depend on the epistemic con-
sequences it has on the agent. 

But the bulk of Drayson’s challenge to the non-isolation claim goes 
in a different direction. Recall that predictive architectures are construed 
on the basis that each level of the hierarchy is causally determined by the 
upper level — no level is immune to receiving influences from the levels 
above. This suggests that higher cognitive levels should somehow shape 
lower perceptual ones, and therefore, our perception of the world is de-
termined by our conception of the world. Drayson tries to avoid this 
conclusion by appealing to possible failures in the logical property of 
transitivity. Indeed, the non-isolation claim stands because predictive ar-
chitectures assume that there must be causal influences across different 
hierarchical levels: level A+1 influences level A, level A influences level 
A-1, and then level A+1 influences level A-1. However, this is the case if 
we assume the logical property of transitivity, and Drayson suggests that 
this might not be the case — perhaps A+1 causally influences A, but not 
A-1. If probabilistic causation does not meet the transitivity require-
ments, then predictive architectures may not preserve the causal influ-
ences over long causal chains. Drayson reasons:  

 
In this way, we can accept that each level in the predictive hierarchy is 
causally influenced by (i.e., gets its priors from) the level above, without 
having to accept that each level in the hierarchy causally influences all the 
levels below it, or that each level is causally influenced by all the levels 
above it. And so it remains plausible that there are perceptual processes 
(lower-level processes involved in spatiotemporally precise predictions) 
which are isolated from cognitive processes (higher-level processes in-
volved in abstract predictions) in the sense that the former are not causally 
influenced by the latter [Drayson (2017), p. 9]. 
 

First of all, it should be noted that this reasoning not only threatens the 
non-isolability claim but also the entire PP framework. PP considers that 
generative weights connecting two layers generate an activation in the 
layers below, which are subsequently registered to cause a prescribed pat-
tern of activation until the activation reaches the layer just above the 
lowest level of input data. If, as Drayson suggests, there is no informa-
tional transitivity between more than two levels, then the causal influence 
exerted by the information of the upper layers should be blind to the in-
formation of the layers below, and therefore perceptual inputs could not 
be predicted. Draysons argument rests on an analogy with Spohn’s 
(2009) probabilistic meteorological models: just as the weather at the 
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turn of the last century does not make a probabilistic difference for to-
day’s weather, causal influences in PP models may also not be preserved 
over long causal chains. The result is transitivity failures in both cases. 
There are, I argue, several ways to avoid this conclusion.  

First, in probabilistic causality, the influence between distant nodes 
may become weaker but not necessarily inexistent; some minimal influ-
ence may be preserved. For example, by adding further conditions to 
causal chains, the transitivity of probabilistic causality [Eells and Sober 
(1983)] and the transitivity of probabilistic support [Shogenji (2003); 
Roche (2012)] can be conserved10. In our context, these conditions 
might be wielded by the influence of lateral connections, perhaps via re-
current lateral inhibition. Indeed, although PP researchers have empha-
sized the importance of feedback connections, their algorithms usually 
capture processes implemented by lateral connections [Rao and Ballard 
(1999), pp. 84-86], and perhaps such connections may form a triad and 
establish transitive relationships [Snijders (2008)]. 

Second, Drayson’s reasoning seems to assume that instead of a dy-
namical cyclic network, the predictive brain delivers a structural acyclic 
network (for differences, see Figure 2). Friston (2011), p. 25, for exam-
ple, considers these two types of probabilistic generative models, the 
structural (DAG) and dynamic (DCM) causal models, and concludes that 
dynamic causal models better capture the essence of PP [see also Hipo-
lito and Kirchhoff, (2019); though see Beni (2022)11]. Therefore, in terms 
of DAG, Drayson’s intransitivity argument makes sense since PP would 
appear as a linear feedback processing, but in terms of DCM, the argu-
ment collapses. In the case of DAG, the influence between nodes follows 
a linear ordering, thus causing the loss of transitivity: n+1 influences n 
which, in turn, influences n-1. But in the case of DCM, the influence be-
tween nodes goes beyond linearity: n+1 influences and is influenced by 
n, which in turn influences and is influenced by n-1, which in turn influ-
ences and is influenced by n+1. All nodes are reciprocally and recurrent-
ly related. But why do the dynamics described in DCM fit better with the 
postulates of PP? There are several reasons. First, the dynamics repre-
sented in DCM better explain how the system goes one step ahead; and 
how current states predict and influence future ones (which is the es-
sence of PP). Second, this dynamic allows the information to be record-
ed in memory for future deployment in case of necessity, thus providing 
the system with a specific autoregulatory mechanism and making it pos-
sible to preserve the information over long causal chains. And finally, 
DCM dynamics provide the system with a continuous rather than a dis-
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crete representation of the world. Indeed, though saccadic eye move-
ments, for example, constitute a series of discrete fixations intercalated 
with rapid movements, our experience of the visual world is temporally 
and spatially continuous. This is because DCM’s dynamics allow the sys-
tem to constantly produce hypotheses about a continuous rather than a 
discrete world. Seen in this way, the idea of predictive brains becomes 
much more robust, accurate and natural without appealing to compart-
mentalized modules. 

 

 
 

FIGURE 3: Differences between structural and dynamic causal modelling 
[Friston (2011), p. 25]. 

 
Finally, rather than functionally specialized modules, predictive 

models suggest that functional segregation is only meaningful in the context of 
functional integration and vice versa [Friston (2011), p. 15], or as recently put 
rather than modularly, predictive models are best understood as per-
forming factorized mean-field approximations, a mean-field approxima-
tion being a description of the message passed from one node to another 
[see Parr et al. (2020)]. Let me introduce the notion of Markov blanket in 
the context of predictive architectures [Friston (2013)]. A Markov blan-
ket for a node in a causal net is the node’s parents, children and parents 
of its children (see Figure 3). Each node contains its own Markov blan-
ket, and it is in some sense closed inside it (x’s nodes in Figure 3, for ex-
ample, do not belong to the Markov blanket of the figure).  
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FIGURE 4: Representation of a Markov blanket [Hohwy (2017), p. 3]. 

 
Interestingly, Markov blankets have been used as a positive argu-

ment for the compatibility between predictive and modular architectures 
[Hohwy, 2013]. Indeed, one can easily interpret Markov blankets as elic-
iting some kind of horizontal isolation since the information processed 
in each Markov blanket may be, in some way, blind to the information 
processed in other layers of the network. But this argument can be resist-
ed. Modules defined in such a way overlap, and thus, it becomes unclear if 
the resulting isolation should be considered genuine informational isola-
tion. Remember, however, that Drayson’s modularity admits the possibil-
ity of overlapping modules and claims that although inconsistent with 
traditional modularity (a la Fodor), predictive architectures are consistent 
with the weaker notion of modules that she puts to work. But even ig-
noring the explanatory loss of a weaker notion of module (which is ob-
vious), the argument fails. Drayson’s argument requires minimal 
functional segregation between nodes, a condition for a module to be 
considered a module. But if Markov blankets are nested, then instead of 
an informational closure, what is assembled is a complex network of 
states dependent on other preceding states in which some kind of infor-
mational exchange must be held [see Kiefer (2017), n. 17]. Consider the 
following illustration: once neurons at n-1 are activated, influenced by 
the activation at layer n, the generative weights between n and n-1 are es-
tablished. The subsequent generative weights connecting n-1 and n-2 are 
engaged by the prior activation at n-1, thus causing a prescribed activa-
tion pattern at layer n-2. And once again, once activated n-2, the genera-
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tive weights between n-2 and n-3 engage, and so forth, down to the layer 
just above the lowest level of input data, which receives the initial senso-
ry data from the receptors. The point is that this picture fits much better 
with the idea of functional integration or mean-field factorization than 
with the idea of functional specialization at every level of the hierarchy. 
The result is an optimal perspective, where each level in the hierarchy is 
accountable to the others by determining the accuracy of a perceptual 
representation and updating this representation accordingly to ultimately 
provide a consistent representation that resolves uncertainty and reduces 
redundancy from the external world. 

 
 

V. CONCLUSION 
 

Predictive processing reverses conventional views about the flow of 
information in the brain. Instead of being a mere transducer passively 
waiting to be activated by external stimuli, perception is seen as an active 
process that participates jointly with the internally generated model to 
predict the incoming sensory data by correcting predictions from the ac-
tual inputs, thus updating the model accordingly. Far from being an-
chored to current situations, our brain is constantly predicting what will 
happen next from previously recorded information. According to PP, 
perception relies on priors as much as on incoming information.  

Attempting to reconcile seemingly conflicting theories is a com-
mendable and sometimes fruitful action. I believe this is not the case 
here. If the postulates of PP are on the right track, the most we can 
thank modular architectures is, besides having opened a fertile debate, 
having distanced us from how minds work. In some way, Fodor over-
stated modules and, since then, theorists have tried to accommodate 
them to the new empirical findings. The crux of a module, its informa-
tional encapsulation, has been converted over time into functional inde-
pendence, functional specialization and finally functional segregation, 
thus losing its original formulation and weakening its explanatory value. 
Modules cannot admit narrower formulations. This is in itself a problem 
for modular architectures, but even taking the weakest notion of module, 
it is not possible to fit it into the increasingly influential theses suggested 
by predictive architectures. What a module cannot support is that per-
ception and cognition lie inseparably in a continuum (continuity claim) 
and that no part of perceptual processing is functionally isolated from 
cognitive processing (non-isolation claim). I have shown, against Dray-
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son, that predictive and modular architectures are opposite, antagonist 
and mutually excluding. Minds can be seen as functionally decomposed 
mechanisms assembled by distinct components, but not in the way that 
modular architectures predict — to be functionally decomposed does 
not mean to be functionally discontinuous or functionally isolated. Per-
ception and cognition are continuous at all levels, and no part of the per-
ceptual brain is isolated from cognition. Finally, if the predictive picture 
of the mind is right, modular architectures should be reconceptualized, if 
not abandoned. 
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NOTES 
 

1 An exception is Sperber (2001), who defends massive modularity with-
out renouncing the informational encapsulation requirement. 

2 The idea of specialized functional modules raises other worries. For ex-
ample, the specific domain in which a functional specialized module is circum-
scribed must still be established (for the moment, only arbitrary suggestions 
have been proposed). Furthermore, even accepting that some modules can in-
teract between them (there is evidence showing the regular transfer of infor-
mation between distinct sense modalities [see the McGurk effect]), it is not clear 
the amount of information that can be transferred without violating the criteri-
on of sensory specialization. 

3 Just as modularity relates to vertical, autonomous, non-interactive, local-
ized psychological faculties and to rule-based processing carried out in a step-
by-step or serial procedure, connectionism relates to horizontal, interactive, 
non-modular cognitive systems and to parallel nonlinear dynamic processing 
[see, however, Drayson (2017), p. 7]. 

4 The arguments addressed by Drayson require, and it is critical to recall it, 
to understand modularity more in the sense of functional independence rather 
than informationally encapsulated modules; modularity is, in this sense, more a 
functional than a structural approach. 

5 Note that the layout of the image is crucial, the configuration of the fig-
ure is, in fact, decisive for the illusion to work. For example, smaller arrows or 
longer lines would undo the illusion. 
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6 It should be noted that I am not arguing against some sort of functional 
differentiation in the brain, — perhaps defined by how functions are integrated 
[Friston (2011)] —, but against the idea that functional differentiation requires 
modularity. As a matter of fact, functional differentiation is a weaker notion 
than functional independence or functional specialization. Modularists have 
moved from positing compacted and encapsulated mental devices that process 
very specific information, to admitting their porosity on certain occasions, to 
recognising the persistent influence of cognition over perceptual experience, and 
from there to define modules as functional independent devices necessary to 
make computational processes more efficiently and fast. In my view, predictive 
processing does not need modules in any of these senses, nor as functional in-
dependent devices. This is simply because predictive architectures can perfectly 
make informational restrictions without the need for any modular mechanism 
[see Parr et al. (2020) and Hipolito et al. (2021)]. For example, the bottom-
up/top-down running of information can operate, depending on their influence 
and prior appearance, as an informational selector, or the degree of prediction 
error marked by the environmental uncertainty can redirect the information to-
wards a delimited range of parameters to which their processing is sensitive [see the func-
tional characterization of Burnston and Cohen (2015), p. 132]. All this is, in my 
view, sufficient to make the system efficient and fast. Thanks to an anonymous 
reviewer for pressing me on this point. 

7 Note that cases such as introspective visualizations, episodic memories, 
mental imagery, dreams or even endogenous hallucinations, which are not per-
ceptual experiences but are felt phenomenologically similar to them, are exam-
ples that support the continuity between perception and cognition. 

8 For some researchers sympathetic with the Predictive Processing frame-
work this explanation is insufficient; a more complete explanation would require 
predictive processing to appeal to bodily and environmental factors [see Gal-
lagher, Hutto and Hipolito (2022)]. 

9 For a critical discussion of many of these studies, see Firestone and 
Scholl (2016). 

10 Eells and Sober (1983) present a theorem in which, seen as a Markov 
blanket (see the following reason), the weather in the past century can influence 
today’s weather, albeit being an infinitesimal small influence. 

11 Beni (2022) suggests one way to save modularity by claiming that PP 
can execute DAGs and DCMs as complementary models. Furthermore, Beni 
argues that even taking DCMs, a modest form of modularity still stands. For the 
first point, I argue that the dynamics described in DCM fit better with PP’s pos-
tulates (see below in this paragraph). The problem with the second point is that 
it requires a very modest form of modularity, a form of modularity that amounts 
to informational segregation between patterns of connectivity [Beni (2022)]. 
But, I think this is not enough to avoid transitivity between nodes. In PP, the 
connectivity patterns are better explained as recursively extended to any arbi-
trary number of levels giving rise to a functional interconnectivity over long 



Predictive Architectures Cannot Be Modular                                                 59 

 

teorema XLIII/3, 2024, pp. 39-62 

causal chains, than as specialized and segregated modules [Hipólito and Kirch-
hoff (2019)]. Undoubtedly, the kind of network executed by brains, just as the 
appealing to Markov Blankets formalism (see below in this section) opens a 
great door on the appropriate way of thinking about the architecture of the 
mind; there is still much to discuss, but the notion of modularity that is intended 
to be saved seems to me increasingly restricted, and ultimately, explanatorily 
vacuous [for a very recent special issue on these topics see Hipólito and Kirch-
hoff (2023)]. 
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