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SOLVING PROBLEMS ON FUNCTIONS: 
ROLE OF THE GRAPHING CALCULATOR 

Vilma Mesa 

To study the roles that the graphing calculator plays in solving problems 

about functions, a small quasi-experimental study was conducted with 

four pairs of undergraduate students solving problems with and without 

the graphing calculator. The analysis of the protocols of the sessions did 

not reveal major differences that could be attributed to the presence or 

absence of the tool but indicated differences in strategies used with each 

problem that could be explained in terms of the nature of the knowledge 

at stake and to students’ availability of that knowledge. The study sug-

gests a model for conducting research that looks for explaining the ef-

fects of technology in learning and instruction. 

Keywords: Functions; Graphing calculators; Problem solving 

Resolución de Problemas sobre Funciones: Papel de la Calculadora Grá-
fica 

Con el fin de analizar el papel que la calculadora gráfica juega en la re-

solución de problemas sobre funciones, se hizo un pequeño estudio cua-

si-experimental con cuatro pares de estudiantes de pre-grado variando 

la condición de la disponibilidad de la calculadora. El análisis de los 

protocolos de las sesiones revela que no hay mayores diferencias que se 

puedan atribuir a la presencia o ausencia de la calculadora gráfica; sin 

embargo, las diferencias observadas en el uso de estrategias que se usa-

ron en cada problema pueden explicarse en términos de la naturaleza 

del conocimiento en juego y de la disponibilidad de tal conocimiento pa-

ra los estudiantes. El estudio sugiere además un modelo para realizar 

investigaciones que busquen explicar los efectos de la tecnología en el 

aprendizaje y en la instrucción. 

Términos clave: Calculadoras gráficas; Funciones; Resolución de problemas 

Graphing calculators have become part of high school mathematics classrooms. 
A survey of calculator usage in high schools commissioned by the College Board 
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(Dion et al., 2001) indicated that graphing calculators are either required or al-
lowed in at least 87% of the mathematics classes offered in high schools (p. 430). 
This imposes an interesting challenge to both college mathematics teachers and 
to mathematics educators who are responsible of preparing future mathematics 
teachers, as many of their students may come with experience with graphing cal-
culators from their high school. A review of the research involving graphing cal-
culators at the undergraduate level shows at least two types of studies. On the one 
hand, there are studies that investigate the impact of introducing graphing calcu-
lators in the classrooms on students’ motivation, attitude, achievement, and reten-
tion (Hennessy, 1997; Hollar & Norwood, 1999; Quesada & Maxwell, 1994; 
Smith & Schotsberger, 1997). On the other hand, there are studies that investi-
gate students’ understanding of the content or their discursive practices in the 
classroom in relation to the representations offered by graphing calculators 
(Dick, 2000; Kaput, 1992; Roschelle, Pea, Hoadley, Gordin, & Means, 2000; 
Ruthven, 1990; Shumway, 1990; Slavit, 1994). Both types of studies work under 
the assumption that the immediate availability of multiple representations of 
mathematical objects facilitate the process of making connections among those 
representations which in turn produces more robust or connected learning (Hie-
bert & Carpenter, 1992; Schoenfeld, 1987). However, using the graphing calcula-
tor efficiently in the classroom or documenting what actually is done with the 
tool has proven to be more difficult to accomplish. Teachers’ beliefs and how 
students organize themselves to work on problems have been cited as reasons 
why implementations with graphing calculators do not work as expected (De-
mana, Schoen, & Waits, 1993; Simmt, 1997). 

In this article I want to suggest that the nature of the tasks, students’ previous 
mathematical knowledge, and their experiences with graphing technology—
independently of the availability of the graphing calculator—shape the collabora-
tive construction of solutions among pairs of students. The present study was car-
ried out to investigate the roles that the graphing calculator played when students 
had controlled access to it in a problem solving session. Studies that look at large 
effects of introducing the graphing calculator in classrooms (e.g., contrast overall 
achievement of a group of students when technology is present vs. not present) 
overlook the fact that the curriculum that is offered to each group is not compa-
rable, and therefore it is not possible to conclude that differences in achievement, 
attitudes, or retention could be attributed only to the presence of the graphing 
calculators. And studies that look very closely at what happens when graphing 
calculators are used in the classroom, can not attribute results to the presence of 
the graphing calculator because there is not much knowledge about the particular 
aspects related to how the graphing calculator is used in specially crafted situa-
tions or about how problems are solved without the graphing calculator. I con-
tend that analyses of such situations may allow us to better understand which 
outcomes can be attributed to the tool itself and which to other factors. Moreover, 
a closer look at what students can do with and without the tool might better in-
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form the process of curriculum design and organization, as well as the quality of 
the interplay between the graphing calculator, the content, and the students. 

In this study, I wanted to know how pairs of students solved problems that 
were produced under the assumption that multiple connections among represen-
tations of a mathematical concept strengthen understanding (Kaput, 1992) and to 
determine how problems were solved under two different conditions, with the 
graphing calculator and without the graphing calculator. I wanted to know if the 
availability of the tool triggered questions that either guided their solutions or 
changed their solution strategies, how much time students spent solving the prob-
lems under each condition, and the level of success solving the problems under 
each condition. For the purposes of this article, I will report on answers to the 
following three questions: (a) What strategies do the students choose as they at-
tempt to solve a problem on functions? (b) How are the strategies different when 
the graphing calculator is present and when the graphing calculator is not pre-
sent? And, (c) what roles does the graphing calculator play in the solution proc-
ess? 

In the next section, I present a brief review of studies that may be seen as 
paradigmatic of research with graphing calculators in general and of graphing 
calculators in problem solving in particular. 

PROBLEM SOLVING AND GRAPHING CALCULATORS 
Reform documents such as the Curriculum and Evaluation Standards for School 

Mathematics (National Council of Teachers of Mathematics, 1989) and Princi-

ples and Standards for School Mathematics (National Council of Teachers of 
Mathematics, 2000) have put a strong emphasis on the use of technology within 
the classroom. According to Smith (1998), teachers facing the challenge of intro-
ducing graphing calculators into their classrooms have used them in four distin-
guishable types of enrichments: tools for expediency (they save time used for te-
dious or difficult procedures), amplifiers for conceptual understanding (they offer 
multiple linked representations), catalysts for critical thinking (they allow explo-
ration of “what if” questions), and vehicles for integration with other disciplines 
(they facilitate the work in other disciplines, like physics or programming). These 
are a posteriori attributions that describe instruction with the tool; it is an open 
question whether these attributed roles depend on the particular tool (the same 
attributions can be made about a computer with a graphing program). A tool has 
a limited set of functions and operations; it is the mathematical activities that im-
pose conditions on how the tool is used in a given situation (see Balacheff, 
1993). A main advantage of graphing calculators and computers is that they ease 
teachers’ burden of creating materials, such as overhead transparencies for ex-
ample. And between graphing calculators and computers, the “power of the small 
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and easy-to-use computer” (p. 1) does make an important difference in terms of 
portability1. 

A typical experimental study contrasting the outcomes of two classes, one in-
tact and one that had graphing calculators, is Graham and Thomas’s (2000). 
Their study aimed at evaluating the potential of a unit designed to help students 
understand algebraic variables2. The graphing calculator in the Graham and 
Thomas’s study was taken as an amplifier for conceptual understanding, a cata-
lyst for critical thinking, and as a vehicle for integrating other disciplines. The 
study involved 147 students using a graphing calculator with the experimental 
unit “Tapping into Algebra” and 42 students who followed their “normal algebra 
teaching whole class, skills-based instruction and assessment with their usual 
teacher presentation style” from six schools in New Zealand (p. 271). The activi-
ties used the graphing calculator storage variables: students would assign values 
to these variables and afterwards conjecture what would happen after modifica-
tions (numerical operations) were performed on those variables. Another activity 
consisted of students guessing the values of two variables when students knew 
results of some numerical operations (e.g.,     

! 

A + B = 0 and     

! 

A / B = "1, p. 270). Ac-
cording to Graham and Thomas, in these activities the students were involved 

in a cybernetic process where the technology reacts to the individual’s 

actions according to pre-programmed and predictable rules. The envi-

ronment provides consistent feedback in which students can predict and 

test, enabling them to construct an understanding of letters in algebra 

(emphasis in original, p. 270). 

There was a statistically significant difference in performance between the two 
groups of students—in favor of the experimental group—in a post-test that 
measured “understanding of the use of letters as specific unknown, generalized 
number and variable” (p. 272). The higher performance of the experimental 
group was independent of prior student ability. Students in the control group sta-
tistically outperformed students in the experimental group in only one of the pro-
cedural skill items in the posttest (“simplify     

! 

(a + b) + a ”). There were no signifi-
cant differences between the two groups in other procedural items. From these 
results, authors concluded that students “can obtain an improved understanding 
of the use of letters as specific unknown or generalized number from a module of 
work based on the graphic calculator” (p. 278). When no significant differences 
are found between the two groups, as is in the case of the Smith and Schotsberger 
(1997) and Alkhateeb and Wampler (2002) studies, the implication is that the 
graphing calculator is not detrimental in terms of what students learn. 
                                                
1 The argument of portability has become increasingly more popular among advocates of hand-
held computers (Vahey, Tatar, & Roschelle, 2004). 
2 See also the following experimental studies at the college level: Alkhateeb and Wampler 
(2002) on derivatives; Hollar and Norwood (1999) and Quesada and Maxwell (1994) on func-
tions; and Smith and Schotsberger (1997) on college algebra. 
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These studies illustrate one of the main difficulties with experimental re-
search on innovations that incorporate the graphing calculator: the control group 
is never exposed to comparable mathematics as the experimental group, the as-
sumption being that the control class should be intact. If one of the points at stake 
is to know whether the graphing calculator makes a difference, a more appropri-
ate approach (and for some, more ethical) to this kind of research would be one 
in which the control group experiences a module that is not based on the graph-
ing calculator but that preserves its spirit in every other aspect. If in this case, the 
cybernetic process attributable to the presence of the graphing calculator does not 
occur, statistically significant different results in performance in favor of the ex-
perimental group could be attributed to the absence of such cybernetic process. 
One of the reasons that no studies have been conducted in such a way may be 
that it is difficult to imagine what the dual environment might be. However, it 
might be possible to deal with this fundamental problem. 

The issue raised about the difficulty of conducting these studies is connected 
to the types of activities teachers need to use when the graphing calculator is 
available, because the activities assume a re-conceptualization of what it means 
“to do mathematics”. But when doing mathematics is equated to problem solv-
ing3 (as it helps to build new knowledge, both within and outside mathematics, 
National Council of Teachers of Mathematics, 2000, pp. 52-53) a natural ques-
tion that arises is: How do graphing calculators support problem solving activi-
ties? A number of studies exist that describe ways in which graphing calculators 
offer learning opportunities to students. Hennessy, Fung, and Scanlon (2001) re-
ported several features of the technology that can structure and support collabora-
tive problem solving. Their study dealt with undergraduate students using graph-
ing calculators in an innovative course at the Open University that looked for fos-
tering understanding of graphing. Drawing from Vygotsky’s ideas of tool media-
tion, from collaborative learning theory, and from work on gender and comput-
ing, they devised three design principles for the activities used (p. 269): 

• Open-ended investigations in which graph recognition and interpre-

tation are developed exploring different kinds of graphs. 

• Personal ownership of the technology (one machine per student) and 

of the activity (student choice of problem solving approach). 

• Collaboration in planning and problem solving and ample opportuni-

ties for discussion with peers; use of individual machines to work on 

a shared task; achievement of written consensus. 

The course was aimed at building students’ confidence in using mathematics (p. 
270). By the end of the course students reported positive feelings and attitudes 
with respect to doing and learning mathematics, and an appreciation of the capa-

                                                
3 In this article a problem is defined as a task for which no clear pattern of solution exist. 
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bilities of the graphing calculator to visualize, to facilitate and accelerate compu-
tations, and to give immediate feedback (i.e., the cybernetic process described by 
Graham & Thomas, 2000). In a follow-up study after four months of taking the 
innovative course, students were observed “planning, executing, and reporting 
calculator actions and strategies” (p. 275). The students used some trial and error, 
but for most of the session, were confident and were not surprised by the results 
obtained in the graphing calculator; they also engaged in productive explorations. 
Students were observed performing actions that would not have been worthwhile 
to conduct manually (e.g., checking if the graphs of two expressions superim-
pose). Hennessy et al. (2001) conclude that (a) the main advantages of the graph-
ing calculator in facilitating students’ learning of graphing fall in three broad 
categories: visualization of functions, automatic translation between representa-
tions and immediate feedback, and rapid and easy graph plotting (p. 278-279); 
and (b) students working collaboratively was an important factor explaining the 
richness of the problem solving session, because students were working synergis-
tically (Noss & Hoyles, 1996) between interdependence and autonomy. The “use 
of technology was firmly embedded within and inseparable from the mathemati-
cal activity being undertaken” (Hennessy et al., 2001, p. 282)4. 

These studies highlight another difficulty for conducting investigations that 
analyze the impact of the graphing calculator in a particular setting. Authors ma-
ke explicit the principles that guide the design of the tasks used in the courses—
which also guides the design of the tasks for the case studies. Such principles, 
backed up by strong theoretical frameworks, assist authors in producing activities 
that help students develop certain mathematical notions with technology, with 
technology and collaborative work playing a fundamental role. Researchers col-
lect information about students on these aspects, and find that, not only do 
students appreciate this way of teaching mathematics, but that in problem solving 
sessions, they exhibit work in which the “use of technology [is] firmly embedded 
within and inseparable from the mathematical activity being undertaken.” I won-
der, could this be otherwise? Is it possible, after creating such a course, that the 
use of technology was neither firmly embedded within nor inseparable from the 
mathematical activity being undertaken? Or, that the students did not work col-
laboratively to solve the problems? The difficulty arises because more than the 
presence of the tools—such as graphing calculator or collaborative work—it is 
the quality and nature of the mathematics that is being learned that has dramati-
cally changed. Our recognition of this different mathematics learning confounds 
our appreciation of the actual role of technology and of group work. 

The present study is a contribution to begin to understand these problems of 
investigating the role that technology in general, and the graphing calculator in 

                                                
4 See Figg and Burson (2005) and Roschelle et al. (2000) for similar studies that illustrate how 
graphing calculators, computers, and handheld technologies can be used to improve the way in 
which students learn. 
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particular, plays in problem solving sessions. The main questions—What strate-
gies do students choose as they attempt to solve a problem on functions? How 
are the strategies different when the graphing calculator is present from when the 
graphing calculator is not present? And what roles does the graphing calculator 
play in the solution process?—will be explored in a more “controlled” setting, as 
is explained in the next section. 

METHOD 

Instruments 

Two problems were adapted from Gómez and Mesa (1995), a book that contains 
about 100 problems on pre-calculus. The problems are the result of a collective 
work that studied the effects of introducing the graphing calculator in a pre-
calculus course (Carulla & Gómez, 1996; Gómez & Fernández, 1997; Mesa & 
Gómez, 1996; Valero & Gómez, 1996) and were created with the purpose of de-
veloping students’ higher-order mathematical thinking (Gómez & Mesa, 1995, p. 
5), according to Resnick’s (1987) characterization (i.e., non-algorithmic prob-
lems having multiple solutions, a high level of uncertainty, and requiring self-
regulation and a great deal of effort). Both problems required students to propose 
expressions for functions that would satisfy a given set of conditions. Problem 1 
provided symbolic forms for the functions with parameters for the coefficients of 
the independent variable, and Problem 2 provided nine graphs of polynomial 
functions, some of them related, with very few precise numerical referents (see 
Figure 1). 

A full description of the content addressed, the reasons for choosing the 
wording, predicted strategies, and difficulties, and the possible hints that could be 
offered for overcoming the difficulties are described at length in Mesa (1996). 
The problems do not preclude the use of solutions based exclusively on symbolic 
approaches but symbolic approaches are not practical to find suitable solutions to 
the problems. 
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1. Find two functions,     

! 

f ( x) = ( x " k )2
+ k  and 

    

! 

g( x) = a x " b + c  such that the 

solution to the inequality     

! 

f ( x) " g(x) is the interval 
  

! 

2,5[ ] . 

2. Give one expression for each of the functions shown: 

   

Graph 1 Graph 2 Graph 3 

   

Graph 4 Graph 5 Graph 6 

   

Graph 7 Graph 8 Graph 9 

Figure 1. Problems selected for the study (adapted from Gómez and Mesa, 1995, 

pp. 93, 102-103) 

The list of strategies, difficulties, and solutions that could emerge in the solution 
process were compiled from previous experiences with the problems, and were 
instrumental during the problem solving session to assist students during the ses-
sion and for the analyses of the data that emerged. 

Two versions of a problem-solving instrument were prepared. Each con-
tained the two problems but with different instructions on the use of the graphing 
calculator. In the first version, the students were not allowed to use the graphing 
calculator in working Problem 1 but could use it for solving Problem 2. In the 
second version, these instructions were reversed. The purpose of using two ver-
sions was to contrast the processes used when the graphing calculator was avail-
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able with those when the graphing calculator was not available. The graphing 
calculator used was the Texas Instruments TI-82. 

A set of three questions—(a) How would things change if you were or were 
not allowed to use the graphing calculator for solving each problem?, (b) What 
knowledge do you think this kind of problems require?, and (c) What is your 
opinion about the problems?—were prepared for having an informal discussion 
once the session was over. With these questions I wanted to get the participants’ 
perspective on the problems and on the appropriateness of using the graphing 
calculator in teaching mathematics. 

Participants 

Because of the nature of the problems I chose, I needed to carefully select the 
participants in order to guarantee that the problems would not look too alien to 
them. I asked permission to conduct in-class problem-solving sessions in two 
courses for students majoring in secondary mathematics education at a large 
southern university. I visited the secondary school mathematics curriculum class 
and the research seminar in mathematics education class, classes taken by the 
students in their third and fourth year in the program. During these in-class prob-
lem-solving sessions, I gave all the students a list of 9 problems that covered top-
ics in linear, quadratic, cubic, quartic, and rational functions. I used these ses-
sions for identifying participants and for fine-tuning the characteristics of the ac-
tivities that would be undertaken during the research problem-solving session. 
The participants were chosen for their engagement with the class activities, the 
different ways in which they addressed questions, their interest in using the grap-
hing calculator, and their willingness to participate in the study. I asked them to 
participate as pairs to facilitate their interactions during the problem solving ses-
sion. Four pairs of students, A: Alice and Amy, B: Ben and Bill, C: Cindy and 
Connie, and D: Dina and Donna (all pseudonyms), were selected; all students 
had worked together frequently in class, except for Dina and Donna, who had 
worked together only occasionally. All students had completed the mathematics 
requirements of their programs (precalculus, calculus, linear algebra, modern al-
gebra, geometry, discrete structures, history of mathematics, computers and algo-
rithms, higher mathematics, and problem solving); one participant, Dina, had al-
so taken differential equations and complex variables. Other characteristics 
(mathematical confidence and performance and interest in inquiring and extend-
ing problems and in using technology) were collected after students had agreed 
to participate in the problem solving session. Most of the pairs of students were 
similar in these characteristics, except for pair D, which had the most differences 
among them, except that both students exhibited low interest in using technol-
ogy. 
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Procedure 

The data were collected during the spring quarter of 1996. The design was quasi-
experimental, with pairs of students solving both problems under different condi-
tions. Each version of the problem-solving instrument was given twice, each time 
to a different pair of students. Pairs A and C solved the first version; pairs B and 
D solved the second version (see Table 1). Each session was recorded and video-
taped with two video cameras; one captured the students’ use of the graphing 
calculator—which allowed me to record their keystrokes—and the other captured 
the students’ interactions and gestures. 

Table 1 
Availability of graphing calculator on prob-

lems for each group 

 Problem 

Group 1 2 

A: Amy and Alice No Yes 

B: Ben and Bill Yes No 

C: Cindy and Connie No Yes 

D: Donna and Dina Yes No 

Each pair of students was told that they had 50 minutes to work on both prob-
lems5, that I would ask them a few questions about the process at the end, that 
they needed to talk “as much as possible,” and that I would interact with them 
only if they asked for help. The students were told to work together, speaking 
their thinking out loud, and were reminded of the time limitation, which was 
thought of as a pressure for them to negotiate a plan for arriving at some solution. 
I provided a TI-82 graphing calculator to each student when the calculator could 
be used. Once the pair had finished the first problem, I collected all the written 
material and gave them the second problem. Field notes were taken during the 
session and I wrote a full report later. When students indicated that they had fin-
ished or when time was over for the session, I conducted the exit interview. 

Data Analysis 

Each problem-solving session was transcribed and eight protocols obtained, one 
from each pair solving a problem. The protocols were supplemented with infor-
mation from the videotapes and my field notes. I produced detailed descriptions 
of the students’ solution to each problem. In order to better identify differences in 

                                                
5 The estimation of time was based on previous experiences with these problems. Pairs of stu-
dents who took part of the reformed pre-calculus course described in Gómez and Mesa (1995) 
required an average of 15 minutes to find suitable solutions. 
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the solution processes under the two different conditions and the roles that the 
graphing calculator played when it was available, I combined two frameworks, 
Schoenfeld’s (1983) and Artzt and Armour-Thomas’s (1990) to parse the proto-
cols. Schoenfeld’s framework was used to determine main episodes in each pro-
tocol by identifying all the points in which managerial decisions were made (e.g., 
“Let’s graph this equation on the graphing calculator”), and Artzt and Armour-
Thomas’s operationalization of cognitive and metacognitive processes was used 
to identify points of managerial decision that were not accounted for with 
Schoenfeld’s framework (e.g., students’ asking for clarification). Once the epi-
sodes were defined, they were classified as belonging to one of the following 
categories: read, analyze, explore, plan, implement, plan and implement, verify, 
and new information and local assessment, using both Shoenfeld’s and Artzt and 
Armour-Thomas’s description. By parsing the protocols, I was able to identify 
different stages of the problem solving process followed by each pair with each 
problem. The parsing and their pictorial representation were used to make claims 
about similarities or differences between situations and to establish in which epi-
sodes the graphing calculator was most commonly used. Table 2 presents the de-
finition of the categories used to classify episodes in each protocol. 

Table 2 
Categories of the analytical framework used for parsing the problem solving 

protocols 

Category Description 

Read The student reads the problem; includes consideration of the 
problem conditions.  

Analyze The student decomposes the problem into its basic elements and 
examines the implicit or explicit relations between the givens and 
goals of the problem. The student may simplify or reformulate 
the problem.  

Explore The student searches for relevant information that can be incor-
porated into the analysis-plan-implement sequence. He or she 
uses different problem-solving heuristics, examines related prob-
lems, or uses analogies. Trial-and-error strategies are common. 

Plan The student selects steps for solving the problem and a strategy 
for combining them that might potentially lead to a problem so-
lution if implemented. 

Implement The student executes each of the steps defined in the plan. The 
student’s actions are systematic and deliberate in transforming 
the givens into the goals of the problem. 
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Table 2 
Categories of the analytical framework used for parsing the problem solving 

protocols 

Category Description 

Plan and 
Implement  

This category comprises those episodes in which the student does 
not make the plan explicit, but one can be inferred from the stu-
dent’s deliberate actions. 

Verify  The student evaluates the outcome of the work so far, for exam-
ple, by a recalculation of the computations.  

New 
Information 
and Local 
Assessment 

Points that can trigger a change in types of episodes. New 
information points are items in which a previously unnoticed 
piece of information–data or heuristics–is obtained or 
recognized. Local assessment is an evaluation of the current state 
of the solution at a microscopic level. 

Transition When either the new information or the local assessment pro-
duced a change in the character of the episode, the triggering 
elements were categorized as transition.  

Consistency in the coding of the episodes was established by inter-rater agree-
ment; a graduate student in mathematics education, not attached to the investiga-
tion, parsed two protocols using the descriptions given in Table 2. The agreement 
(measured as number of utterances classified as belonging to the same episode 
divided by the total number of utterances of the protocol) was 90% in one proto-
col and 100% in the other. 

RESULTS 
The protocol parsing was used to determine whether there were patterns common 
for the cases in which the graphing calculator was available as contrasted to the 
cases in which the graphing calculator was not available. In general, the parsing 
reflects a problem solving behavior that is consistent with that of novice problem 
solvers (Schoenfeld, 1992): students read the problem, sometimes analyzed the 
situation (about 35 minutes in total for all groups) but usually began immediately 
to implement a solution (approximately 70 minutes in total for all groups) or to 
explore an alternative (about 75 minutes in total), without making a plan explicit, 
and rarely conducting assessment of overall progress (about 10 minutes total for 
all groups) or verification of solutions (about 10 minutes for all groups). The 
main differences observed were across problems, with Problem 1 having twice as 
much time spent analyzing the situation (23 minutes in Problem 1 vs. 12 minutes 
in Problem 2) and Problem 2 exhibiting considerable portions of exploration (70 
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minutes total for all groups) that did not happen in Problem 1 (5 minutes for only 
one group). For more details about the parsing and the results, see Mesa (1996). 
Given that the major differences seem to be associated with the problems, I turn 
now to answer Question (a)—What strategies do students choose as they attempt 
to solve a problem on functions?—by describing the solutions the groups pro-
posed for each problem and then presenting the uses of the graphing calculator 
by the groups that had it available. In the discussion section, I will present an-
swers to the remaining two questions, How are strategies different when the 
graphing calculator is present from when the graphing calculator is not present?, 
and What role does the graphing calculator play in the solution process? 

The Students’ Solutions 

In solving Problem 1, two different solutions were observed: Fix parameters and 

solve the equations, followed by pairs A, B, and C, and Solve inequalities sym-

bolically followed by pair D. In the first strategy students created sketches of the 
functions given and then selected arbitrary numbers for three of the parameters in 
the expressions. Next, they set up a system of two equations and two unknowns 
and solved for the two remaining parameters. A summary of the work by stu-
dents in pair C, who did not have the graphing calculator available for this prob-
lem, is given in Table 3. Only one group attempted a verification of the solution 
they found. 

Table 3 
Solution to Problem 1 by Group C 

Field Notes Students’ Work 

They assigned values to h and k.     

! 

h = 3.5 and     

! 

k = 0  

They found     

! 

f (2) by direct substitution in 

    

! 

f ( x), and found     

! 

f (5)  by symmetry in 
the graph. 

    

! 

f (2) = f (5) = 2.25 
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Table 3 
Solution to Problem 1 by Group C 

Field Notes Students’ Work 

They assigned values to h and k.     

! 

h = 3.5 and     

! 

k = 0  

Next, they fixed b.     

! 

b = 3.5; therefore, 
    

! 

y = a x " 3.5  

They substituted     

! 

y = 2.25 in the expres-
sion for     

! 

g( x)  and solved for a, using 
both 2 and 5 in place of x.  

    

! 

g( x) =1.5 x " 3.5  

In the second strategy, followed by pair D, who had the graphing calculator for 
this problem, the students wrote explicitly the inequality, replaced     

! 

x = 2  and 
    

! 

x = 5 into the inequality, and obtained a system of two inequalities: 

! 

a2 " b + c " (2 " h)
2
" k # 0

a5 " b + c " (5 " h)
2
" k # 0

 

Taking cases for the absolute value, they generated four inequalities, and after 
some manipulations—some of them incorrect—reduced the problem to one ine-
quality that related two of the four parameters: 

! 

a2 " b " a5 " b # 4 + 4h + h2( ) + 25 "10h + h2( ) 

The students did not incorporate graphs or sketches of the functions into their so-
lution and were unable to provide a pair of functions that satisfied the conditions 
given. 

The solution by Group B, which had the graphing calculator, is worth dis-
cussing further, because this is the only group that attempted a verification of 
their solution with the tool, a move that helped them to correct their original “so-
lution” (see Table 4). 

Table 4 
Excerpts from the solution to Problem 1 by Group B with graphing calculator 

Field notes Students’ Work 

They wrote an inequality using the functions with 
parameters and wrote two equations, one obtained by 
substituting    

! 

x = 2  the other by substituting     

! 

x = 5. 

! 

(2 " h)
2

+ k = a2 " b + c  

! 

(5 " h)
2

+ k = a5 " b + c  

They substituted values for h and k (i.e., fixed the 
parabola by setting     

! 

h =1 and     

! 

k = 3). 

! 

(2 "1)
2

+ 3 =  

They set b equal to 2 and solved the resulting system 
    

! 

4 = a 2 " 2 + c  
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Table 4 
Excerpts from the solution to Problem 1 by Group B with graphing calculator 

Field notes Students’ Work 
of two equations and two unknowns for a and c us-
ing the values of     

! 

f (2) and     

! 

f (5)  getting     

! 

a = 5,     

! 

c = 4.     

! 

19 = a 5" 2 + c 

They wrote down the expressions and entered them 
into the graphing calculator: 

! 

f (x) = (x "1)
2

+ 3; 

    

! 

g( x) = 5 x " 2 + 4. 

They were about to say that the problem was solved, 
but the wider range of points in the graphing calcula-
tor and the fact that the table showed three points at 
which the functions were equal helped them state 
that there was an error. They went over the process 
but could not say what might be done to fix the prob-
lem. 

 

 

They constructed a table of ordered pairs for the 
function of the absolute value and made its graph on 
paper. With these data they verified that there was a 
third intersection point. 

After exploring with the graphing calculator they 
found that moving the vertex of the function with the 
absolute value away from     

! 

x = 2  would eliminate the 
third intersection. 

They changed b to a number greater than 2 and 5, 
namely 8, and solved the two equations. 

 

Ben and Bill chose b, the x-coordinate of the vertex of the function with absolute 
value, as one of the extremes of the solution interval and a parabola that was 
“opening up.” These selections forced the vertex of the absolute value function to 
be on the parabola, and “inside” it, but because quadratic functions grow faster 
than linear functions, a third intersection could be expected. Both of the students 
in this pair, however, were reluctant to accept the evidence shown in the graphing 
calculator and created a table, finding values with paper and pencil, to confirm 
the results. After some time spent in assimilating the evidence, students modified 
the solution, by moving the vertex of the parabola to the right of the interval, and 
repeating the process again. No attempt to verify this new solution was made. 

In solving Problem 2, all the students began by recognizing the degrees of 
the polynomials depicted; they also recognized the transformations that were ap-
plied to some of them to obtain others. Almost all the students’ solutions incor-
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porated elements of three different strategies to find a basic function that could 
be transformed to obtain other graphs that were evidently derived from such 
functions6. The three strategies were (a) transform a general expression, (b) use 
roots observed to create factors, and (c) set up a system of linear equations. With 
the first strategy students began with a polynomial expression (e.g., 

    

! 

ax
3

+ bx
2

+ cx + d  for a cubic polynomial) and using trial and error modified the 
parameters (a, b, and c) to obtain a graph that resembled the one sought. With the 
second strategy, students used the roots seen in the graphs to create a symbolic 
expression in the form     

! 

a( x " r1)( x " r2 )…( x " rn ) , for a polynomial of degree n. 
With the third strategy, students selected points on the given graphs and substi-
tuted them into a polynomial expression to set up a system of linear equations 
that is solved by standard methods. 

Groups A and C, who had the graphing calculator, used the first strategy; that 
is, they attempted to transform the general expression of a cubic function to fit 
Graph 1. They started by assigning parameters to the expression 

    

! 

ax
3

+ bx
2

+ cx +10 and checking the resulting graph against Graph 1. After un-
fruitful experimentation they asked for help. I suggested looking at the similari-

ties between their graph and the graph of the expression     

! 

y = x
3
" x . Finding the 

two graphs similar, the students began to use trial and error in modifying this ex-
pression to obtain the expected graph. After more intervention aimed at making 
explicit the relation between the roots of a polynomial and the factored expres-
sion (e.g., “factor the expression and consider when the function is zero”), the 
students in these two groups produced reasonable expressions for Graphs 1 and 
2. Students who had access to the graphing calculator relied on the general shape 
of the graph to appraise the good fit of their proposed functions, rather than on 
the analytical tools that can be used to model the functions. 

Of the two groups who solved this problem without the graphing calculator, 
Group D, used the second strategy, using the roots and provided expressions for 
graphs 4, 5, 6, 7, and 1 (in that order). Group B used the third strategy. Ben and 
Bill started with a factored expression to set up a system of linear equations to 
find Graph 1: They wrote three linear factors,     

! 

f ( x) = "a( x + 2)(x " 3)(x " z), mul-
tiplied them together to obtain the general cubic equation, and solved the system 
of two equations in two unknowns [choosing     

! 

f (1) = 7  and     

! 

f (0) = 8], which led 
them to the final expression: 

                                                
6 The activity assumed that students would be generating the polynomial function of smallest 
degree whose behavior in the given interval was the same as the behavior illustrated in the figu-
res. Without this condition, we have infinitely many expressions that could fit each graph in the 
interval given. 
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! 

f ( x) = "
7

45
( x + 2)(x " 3)(x "

60

7
) . 

They made some computational mistakes in the process. The students did not at-
tempt to verify the correctness of their proposal and did not find other expres-
sions. 

Students’ Use of the Graphing Calculator 

It has been suggested that the graphing calculator is an important tool during ex-
ploratory work in problem solving activities. In this study, students seemed to 
prefer to use the graphing calculator for verification in Problem 1 and for explo-
ration in Problem 2. In solving Problem 1 only Group D used the graphing calcu-
lator in an exploratory way, to find out the shape of the absolute value function, 
but did not use the result obtained nor did they attempt to use the graphing calcu-
lator again: 

Dina:  Okay, well let’s see what this [absolute value function] graph looks 
like. Can you find what this graph looks like? 

Donna:  With this? [Pointing to the graphing calculator.] 

Dina: Uh-huh. 

[After some difficulties with the range of the display screen, Donna 
produces the graph of 

    

! 

g( x) = x "1 + 3] 

Donna:  Okay. 

Dina:  That is what it looks like? Neat. 

Donna:  Well, it depends on what your constants are. 

Dina:  Right. Okay. [Returns to her symbolic manipulations] 

Later, the possibility of using the graphing calculator is ruled out: 

Donna:  I can’t do the graph of them [in the graphing calculator] until we 
know... 

Dina:  Yes, what these numbers are! 

Because the problem asked for five parameters and Group D did not know them, 
they decided that using the graphing calculator was inappropriate. They felt that 
they could not use what they were supposed to find as part of the solution. The 
situation did not make it possible for them to use the graphing calculator as they 
expected, in checking the correctness of the graphs of the functions that they 
were looking for. 

Group B used the graphing calculator in Problem 1 during a verification epi-
sode that in the long run allowed them to carry out some exploratory work. Re-
call that when conducting the verification they found three intersection points in-
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stead of two and that grappling with the mistake was not straightforward. Their 
first reaction was to deny the evidence and demonstrate that there was a mistake 
in the information provided by the calculator. One argument used was that the 
parabola was wide enough which would make a third intersection point unlikely 
to occur. Ben checked, both by hand and by using the table option in the calcula-
tor, that the functions intersected at 2 and 5. When a wider window showed them 
the three points of intersection, they drew by hand the graph of the absolute value 
using their hand-generated table of ordered pairs. Once they were convinced that 
the two graphs also intersected at –5, they proceeded to see how to resolve the 
conflict in a cycle of explorations. But in spite of this cycle of explorations, Ben 
and Bill, appeared to use the graphing calculator as a verification tool during the 
problem solving session. The fact that the graphing calculator did not produce the 
expected results and their reluctance to accept the evidence indicates that they 
expected to check their answers with the calculator. 

During the post-interview, the groups that did not use the graphing calculator 
indicated that they would have used it in Problem 1 for checking their answers. 
Group A said: 

Alice:  But the main point was the full process. As for where do you start and 
where do you put that vertex and, you know, those things, you can’t 
really use the graphing calculator with them yet. ... We kind of experi-
ment if there were different parabolas than what we thought and then we 
graph it quickly for us instead of doing it by hand. But I think that the 
by-hand part helped us more than anything. 

Amy:  Or if we do not know what the absolute value graph was, we just can 
graph a quick and easy absolute value and see what it was. But–. 

Alice:  Right. 

Amy:  But it is as easy to do it by hand as it is to do with the calculator. 

Group C gave a similar response: 

Connie:  I think that having the graphing calculator, you can do it [solve the 
problem], but playing around more. 

Cindy:  You mean more trial and error? 

Connie:  Yeah, I don’t, you know, I usually do not think about what I am doing 
when I am using it [the graphing calculator] a lot of the time.... I mean, 
I do [think], but I draw less.… 

Cindy:  This is more of a process, you know. We have numbers. We would be 
more totally guessing [by using the graphing calculator]. 

Note, in this last excerpt, how the role of the graphing calculator in exploring is 
downplayed (“totally guessing”, “more trial and error”). In contrast, in Problem 2 
the graphing calculator was used principally in exploration episodes to test the 
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effects of different coefficient values on the graph of the function. Students who 
had the graphing calculator tested many parameters and suggested several hy-
pothesis about the connections between those parameters and what they were get-
ting, very similar in what Graham and Thomas (2000) describe as a cybernetic 
process. However, in the absence of the knowledge about the relation between 
the roots of a polynomial as seen in its graphs and the polynomial’s factored ex-
pression most of these explorations were not productive. Although all four 
groups made conjectures as to the value of the parameters, the graphing calcula-
tor made a difference in the time used to answer the same questions. On average, 
the groups without the graphing calculator tested two functions in 3.5 minutes, 
whereas the groups with the graphing calculator tested an average of five func-
tions in 3 minutes. That the graphing calculator was expected to be useful in their 
exploration was also evident by Group D’s “Oh! We can not use the graphing 
calculator for this!” uttered with disappointment at the beginning of their work 
on this problem. Pairs A and C who had access to the graphing calculator spent 
about 46 minutes in explore episodes, 40 of which were done with the graphing 
calculator. 

An important difference to note between the groups with graphing calcula-
tors and the groups that did not have them, was the time spent in solving the 
problems. Table 5 shows the time in minutes each group spent working on each 
problem. The underlined number corresponds to the session when the graphing 
calculator was available: When the students had the graphing calculator, they 
took more time—in one case twice as much as—than the time used when the 
graphing calculator was not available. 

Table 5 
Time in minutes to solve each problem by each 

group 

Group Problem 1 Problem 2 Total Time 

A 14 39 53 

B 34 21 55 

C 16 26 42 

D 27 22 49 
Note: The underlined number corresponds to the minutes 
spent in the session when the graphing calculator was 
available. 

DISCUSSION 
Two key observations emerge from these results. There is not much reason to be-
lieve that there were substantial differences in how the students solved the prob-
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lems when the graphing calculator was available as compared with when it was 
not available. Second, the students opted for strategies in which the graphing cal-
culator would back up their answers to solve Problem 1, or would test their hy-
pothesis about the coefficients for Problem 2. The only advantage the students 
with the graphing calculator had in solving Problem 2 was that they could test 
more functions in the same amount of time. 

Strategies Are not That Different 

Although Problem 1 is not a standard inequality problem (such as find the solu-
tion to 

! 

(4x " 2)
2
"1# 3 x " 2 + 2), it contained elements that might have induced 

the recall of certain approaches (decompose the absolute value, find the points 
when an equality is obtained). However, the task is designed in such a way that a 
link between the symbolic representation of the functions and its graphical repre-
sentation is useful for progressing towards a solution of the problem. Failure to 
use this link kept Group D from solving the problem. The graphical representa-
tion can come into play in two ways: in depicting how the functions look (some-
thing that all groups did) and in confirming that the inequality had the given solu-
tion set. For none of the groups was the graphing calculator crucial for depicting 
the functions: Groups A, B, and C knew the form of the graphs they were dealing 
with whereas Group D thought they did not have the right to use it. But for all the 
groups, the graphing calculator was fundamental for verifying that the functions 
satisfied the given conditions. Students who did not have access to the graphing 
calculator were able to find a solution to the problem whenever they knew gen-
eral shapes of the functions involved, and for at least one group the graphing cal-
culator was important in verifying that the functions proposed satisfied the condi-
tions given. A symbolic approach to verification would require selecting a repre-
sentative value from three different sets (a number less than 2, another between 2 
and 5, and another greater than 5) and to establish in each case whether the left 
side of the inequality is greater than, equal to, or less than the right side. A 
graphical representation simplifies this task by showing the intervals in which 
one graph is above, coincides with, or is below the other. Thus it seems that be-
cause students in Groups A, B, and C could connect the symbolic and graphical 
representations, they were able to engage in a process that led them to produce a 
solution, whereas the lack of this link made it impossible for Group D to find a 
solution independently of the availability of the graphing calculator. 

The students in this study did not attempt to find other possible solutions to 
Problem 1. From previous experiences, I have found that a visual representation 
of the functions facilitates “dropping” conditions implicitly imposed on the solu-
tion (e.g., students tend to assume that the vertices of the parabola and the abso-
lute value should coincide with the half point of the interval [2, 5], or that a in 
function g(x) must be different from 0). The visual representation provided by the 
graphs allows students to identify the two points of intersection as key for the so-
lution: these points, and the relation between the functions, should be kept. Even 
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in environments when the graphing calculator is not available, students tend to 
imagine how the vertex of the absolute value could be “moved up and down,” 
satisfying the conditions and generating hypothesis about the values of the pa-
rameters. One such attempt could be perceived by Group B’s resolution of their 
conflict when they “dragged” the vertex of the absolute value away from the so-
lution interval. It might be possible that further probing could have helped these 
students realize that there were many more pairs of functions that satisfied the 
given conditions. 

Problem 2 illustrates a different issue. The most difficult task for the students 
was to produce a basic expression that could be transformed to generate a new 
expression that would match the graph given. Students in groups A, B, and C 
were confident with the transformations but lacked familiarity with the 
mathematical content that would facilitate the production of a basic expression 
for these types of polynomials (recall that none of these students had trouble with 
linear and quadratic expressions). Students were resourceful in using their 
knowledge (of general aspects such as shape and symbolic representation most 
likely to produce such outcomes) either as a basis to begin an exploration of pa-
rameters or for finding alternate routes (e.g., setting up a system of equations) to 
solve the problem. However, once the connection between the factored expres-
sion of a polynomial and the roots as illustrated in a graph was made available 
for the students—that was Group D’s initial knowledge—the solution process 
became more straightforward. Again, the availability of the knowledge was a bet-
ter “predictor” of the outcomes than the presence or absence of the graphing cal-
culator. 

Roles of the Graphing Calculator 

In both problems, the main use of the graphing calculator was to find the graph 
of a function. Graphing a function, however, served different purposes in solving 
the two problems: to verify solutions in Problem 1 and to test proposed values for 
parameters in Problem 2. Students’ previous encounters with graphing calcula-
tors, the nature of the tasks, and the knowledge the tasks put in play may help 
explain these results. 

The graphing calculator allows students to work on problems in which a 
family of functions is described based on results of multiple graphs of a param-
eterized expression (e.g., 

! 

ax
2

+ bx + c ). Another common use consists in looking 
at the different representations available (tables, graphs, symbolic expressions), 
altering them, and contrasting the results. Yet other uses involve the interpolation 
of data to find expressions that fit a given data set. All these tasks, in essence, 
take advantage of what the graphing calculator can do, overlooking to some ex-
tent the questions of what mathematics is worth teaching given these capabilities 
of the tool (Williams, 1993). Thus in Problem 1, in which the students had the 
expressions and there was not an explicit requirement of describing the family of 
functions depicted, students chose to use the graphing calculator to verify the so-
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lutions obtained. Problem 2, on the other hand, required students to re-create the 
expression that would fit the graphs given. Even in this case, the students opted 
for a parameter testing procedure applied to a given expression, taking advantage 
of what the calculator can do. Students’ appraisal of the goodness of fit was 
based on the graphical resemblance rather than on structural properties of the 
parameters involved. 

The knowledge at stake, that is, the knowledge that is needed in order to be 
able to engage productively in the activities, may also explain the different pur-
poses for graphing a function. In Problem 1, Groups A, B, and C were familiar 
with the general characteristics of the functions and with the relationship between 
the solution to an inequality and the graphical representation of the expressions 
involved. Group D lacked this knowledge; therefore, they could not advance pro-
ductively in solving the problem in spite of the availability of the graphing calcu-
lator, and in spite of their using it in a brief exploratory episode. However, for all 
groups, familiarity and confidence in their solution process made them use the 
graphing calculator in verifying their solutions. Only when the graphing calcula-
tor gave results that were unexpected, did the act of graphing have a different 
purpose. In Problem 2, the knowledge at stake, that is the fundamental theorem 
of algebra, was not in students’ repertoire. In this case, the function-graphing ca-
pability of the graphing calculator became the only resource students could use 
more or less successfully, in order to deal with the problem. Interestingly, once a 
basic function was found, the process of transforming the function to obtain re-
lated functions became a paper and pencil activity, with the graphing calculator 
playing a very limited role in verifying that the functions proposed met the ex-
pected conditions. 

Finally, how students have experienced solving mathematical problems with 
the graphing calculator may account for students’ use of the tool. The students in 
this study had a varied set of experiences with and interest in using the graphing 
calculators, but such diversity does not seem to have had an influence on the uses 
they gave to the tool—the uses seem independent of such experiences. A larger 
sample of students may be more suitable for establishing the extent to which pre-
vious experiences with the graphing calculator can affect how the graphing cal-
culator is used in a problem solving session. 

CONCLUSIONS 
The results of this study suggest that the role of the graphing calculator in guid-
ing students’ active construction of solutions to problem solving activities—at 
least when they relate to functions—merits more careful analysis. There is some 
reason to believe that what guides the problem solving efforts beyond the avail-
ability of the tools is (a) the way in which knowledge is to be used and (b) stu-
dents’ familiarity with that knowledge. 
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The students in this study were not trained to use the graphing calculator in 
particular ways; nor did they declare a heavy use of graphing calculator as un-
dergraduates. This fact adds to these findings, because it shows that students we-
re actually responding to the constraints in the tasks and not to the cues that may 
be established when there is an instructional agenda that supports the use of 
graphing calculators as in the studies reported in the literature review section. In-
deed, it is difficult to control for instruction in such studies; but instruction 
should be taken into account when making claims about the effects of innova-
tions in the classroom. On a recent observation, a group of about 15 second-year 
undergraduate students were given Problem 1 after receiving a 5-minute re-
fresher on linear and quadratic functions. The refresher was delivered using the 
blackboard and overhead projector and transparencies that were moved up and 
down to illustrate effect of parameters on linear functions. In spite of the avail-
ability of the graphing calculator, none of these students opted for using it; they 
arrived at solutions in less time than what was observed in this study; and were 
able to suggest families of solutions, to generalize, and drop some of the condi-
tions. My short “instruction” in this case pointed at the relevant knowledge stu-
dents needed to be able to engage with the task. So, in this case, with students 
who were not familiar with the problem the overhead projector and the transpar-
encies fulfilled the purpose of illustrating the connections between representa-
tions, which was a crucial content for attempting the problem. Thus the claim 
that graphing calculators can be used as amplifiers for conceptual understanding, 
as catalysts for critical thinking, or as vehicles for integration, as suggested by 
Smith (1998), is a claim that may apply to other tools, given that instruction, 
with those tools, includes such purposes. 

Smith also notes that graphing calculators are seen as tools for expediency, 
because they save time that otherwise would be used in tedious or difficult pro-
cedures (e.g., estimating a best fit regression line). However, the results of this 
study suggest that the time saved in computations will be used in other kinds of 
activities that may be more time consuming. The illustration for this phenomenon 
is the time spent in exploration by the groups who had the graphing calculator in 
Problem 2: of the 65 minutes that the groups spent solving Problem 2, 46 min-
utes (71%) were devoted to exploration; and of these 46 minutes, 87% was de-
voted to exploration with the graphing calculator. This is a sizable amount of 
time, especially considering that for the most part the explorations did not help 
students find suitable solutions, until an intervention helped students reorganize 
their exploration (“factor the expression 

! 

y = x
3
" x  and consider when the func-

tion is zero”). This phenomenon raises an important issue for practice because it 
shows that even though the cybernetic process is a key feature that the graphing 
calculator affords, if the process is not informed by mathematical principles, 
knowledge reorganization may not occur after all. 
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That students used the graphing calculator to verify the solutions when they 
were more comfortable with the knowledge and to explore when they were not, 
may give some root to the perception that real mathematics is not really carried 
out with calculators, that the mathematics that counts is the one that is done with 
paper and pencil. Thus in spite of the importance of the tool for assisting in find-
ing solutions, the tool is after all, a crutch, something you may dispose of when 
you become proficient with the knowledge. Further research in this area could 
consider students’ beliefs about the role of technology in doing mathematics. 

Finally, this study was sensitive to offering the same mathematical opportu-
nities to both groups of students; that is it looked for maintaining the mathemat-
ics at stake a “constant.” Ethical issues may arise when we conduct studies that 
benefit some and not other groups of students, as it may happen in controlled ex-
periments in education. However, the issue of crafting activities that put interest-
ing mathematical knowledge at stake is a difficult one, more so when we also 
want to study the actual role that tools play in those situations. The alternative 
proposed in this study was to not have the tool, and to study that situation vis a 

vis the situation in which the tool was present. Could we claim that there was not 
a cybernetic process? Or that there were not opportunities for conceptual under-
standing? Or that critical thinking did not happen? As illustrated by the results, 
these activities happened in both situations. Thus the tool itself, although it may 
have been seen as the reason for some of these opportunities to happen, may only 
be playing a secondary role to that of the transformation of instruction and cur-
riculum. The study of these transformations may be a more fruitful area for fur-
ther investigation of students’ uses of technology in the classroom. 
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