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THE DISTRIBUTED NATURE OF PATTERN 

GENERALIZATION 

Ferdinand Rivera 
Drawing on a review of recent work conducted in the area of pattern 
generalization (PG), this paper makes a case for a distributed view of 
PG, which basically situates processing ability in terms of convergences 
among several different factors that influence PG. Consequently, the dis-
tributed nature leads to different types of PG that depend on the nature 
of a given PG task and a host of cognitive, sociocultural, classroom-
related, and unexplored factors. Individual learners draw on a complex 
net of parallel choices, where every choice depends on the strength of 
ongoing training and connections among factors, with some factors ap-
pearing to be more predictable than others.  

Keywords: Algebraic thinking; Distributed view of pattern generalization pro-
cessing; Mathematical structures; Mathematical thinking; Pattern generalization 

La naturaleza distribuida de la generalización de patrones 
Sobre la base de una revisión de trabajos recientes en el área de genera-
lización de patrones (PG), este artículo aboga por una visión distribuida 
de PG, que básicamente sitúa la capacidad de procesamiento en térmi-
nos de convergencias entre diferentes factores que influyen en PG. En 
consecuencia, la naturaleza distribuida conduce a diferentes tipos de PG 
que dependen de la naturaleza de una tarea PG dada y una serie de fac-
tores cognitivos, socioculturales, inexplorados y relacionadas con el au-
la. Alumnos individuales se basan en una compleja red de opciones pa-
ralelas, donde cada elección depende de la fortaleza de la formación 
continua y las conexiones entre los factores, con algunos factores más 
predecibles que otros. 

Términos clave: Estructuras matemáticas; Generalización de patrones; Pensa-
miento algebraico; Pensamiento matemático; Vista distribuida del procesamiento 
de la generalización de patrones 
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Pattern generalization ability involves the proficiency to construct and justify an 
interpreted well-defined structure from a constrained set of initial cues (Rivera, 
2013). Such structure is mathematical in which case it refers to “a mental con-
struct that satisfies a collection of explicit formal rules on which mathematical 
reasoning can be carried out” (National Research Council, 2013, p. 29). Hence, 
pattern generalization (PG) and mathematical structure are intimately and con-
ceptually intertwined, meaning to say that PG ability is interpretive and rule-
driven in nature and enables learners to employ predictive and inferential reason-
ing despite the initial constraint of having only an incomplete knowledge of the 
target objects for generalization (e.g., stages in a pattern such as those shown in 
Figure 1 or a set of particular instances, situations, or cases). 

 
Figure 1. Beam pattern 

One unintended consequence of recent results on PG processing is the translation 
of evidence to interpretive norms of practice (e.g., how teachers expect students 
to model PG processing). While certainly at this stage we can more or less claim 
that cognitive shifts from the additive to the multiplicative, from the factual to 
the symbolic, from the arithmetical to the algebraic, and so on provide successful 
indications of generalized (especially functional) thinking among learners in var-
ious grade levels and tasks, the truth of the matter is that a complex of factors 
will always influence PG performance. In this article, we explore a distributed 
view of PG, which basically situates processing ability in terms of convergences 
among several different cognitive and non-cognitive factors that influence PG. 
The distributed nature of PG inevitably leads to a natural occurrence of different 
types of PG. That is, depending on the nature of a given PG task and a host of 
cognitive, sociocultural, classroom-related, and other unexplored (e.g., neural) 
factors, PG processing draws on a complex net of parallel choices, where every 
choice depends on the strength of ongoing training and connections among fac-
tors, with some factors appearing to be more predictable than others. The primary 
mode of evidence for a distributed view of PG processing nestles on a review of 
recent work on generalization in both pattern and non-pattern contexts. 

Consider the following interview episode below with a US second-grade stu-
dent named Skype (S; age 7 years) who was asked to obtain a PG for the Beam 
pattern task shown in Figure 1 in a clinical interview setting that took place after 
a one-week teaching experiment on growing figural patterns (Rivera, 2013). Dur-
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ing the experiment, the students in Skype’s class explored linear patterns to begin 
to develop the habit of noticing and paying attention to parts in figural stages that 
appeared to them as being common and shared across the given stages. Once 
those parts have been identified, they were then instructed to color those parts 
using the same color from one stage to the next and to use a different color to 
shade the remaining parts. Next, they were asked to extend the given stages to 
two more near stages (oftentimes Stages 5 and 6) before dealing with the task of 
either drawing or explaining to a friend how some far stages in their pattern (e.g., 
Stages 10, 25, and 100) might behave on the basis of their initial inferences.  
Interviewer (I): Your job is to figure out what comes next, Stage 5. 

Student (S): Okay. [He draws Stage 5 on paper. See Figure 2.] 

 
Figure 2. Skype’s constructed Stage 5 

I: Okay, so how did you know what to do? 

S: Because here [referring to the bottom row of Stage 4] it has 4 and that I added 1  
more. And right here [referring to the top row of Stage 4] I added 1 more. And this  

[top row][in Stage 4] one has more [in comparison with Stage 3]. And the top row has 
more [pointing to the top rows in Stages 1, 2, and 3] and the bottom row [pointing to 

the bottom rows in Stages 1, 2, and 3] has less. 
I: Okay, so can you show me what comes next in Stage 6. [He draws Stage 6 on paper. 

See Figure 3.] 

 
Figure 3. Skype’s constructed Stage 6 

I: Okay, and how do you know how many to put? 

S: I just added 1 more on each side [referring to Stage 6] and then right here [refer-
ring to the top row of Stage 5] has less than this [referring to the top row of Stage 
6]. 

I: Okay so when you said you added 1 extra [square] on each side, could you ex-
plain that a little more on this drawing [referring to Stage 5]? 
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S: Hmm. Like you added another 1 right here [on the right corner of the top row in 
Stage 5] and another here [on the left corner of the top row in Stage 5]. Then you 
just add one more right here [on each corner of the bottom row of Stage 5]. 

I: Okay, and how did you know how many to put here [referring to the entire Stage 
5]? 

S: Because over here [Stage 5] it gets bigger and bigger [points to Stages 1, 2, 3, and 
4]. 

I: Okay, so what about Stage 10. Could you explain to me how to make Stage 10, 
give me instructions so that I could draw it, how would you explain it? 

S: Hmm, you need 10 on the bottom and 11 on the top. 

I: Okay, and what about Stage 25? 
S: 25 on the bottom and 26 on the top. 

I: And a hundred? What about Stage 100? 
S: 100 on the bottom and 101 on the top. 

When the interviewer asked Skype to check whether his constructed Stages 5 and 
6 (Figures 2 and 3) were consistent with the verbal description he offered for 
Stages 25 and 100, he redrew them and produced the figural stages shown in 
Figures 4.  

 
Figures 4. Skype’s corrected Stages 5 and 6 

In a follow up interview that occurred the next day, Skype was presented with the 
modified beam pattern task shown in Figure 5. 

 
Figure 5. Modified beam pattern 

Following the same protocol as before, the interviewer asked Skype to first ex-
tend the figural pattern to Stages 5, 6, and 7. Figure 6 shows his drawn Stages 5, 
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6, and 7. When the interviewer asked him to explain his pattern, he reasoned as 
follows.  

 
Figure 6. Skype’s extensions of the Figure 5 pattern Stage 5 and Stage 6 and 7 

S: Right here [referring to Stage 4] it has 4. You add 1 more [referring to the top row 
in Stage 3]. And then you add 1 more right here [referring to the bottom row of 
Stage 4 in comparison with the bottom row of Stage 3]…. Then in Stage 5, there’s 
5 [squares] here and 1 black square [referring to the top row], and then 5 [squares] 
right here [referring to the bottom row].  

I: Okay, great! So what would Stage 10 look like if you just explain it to me? 
S: 10 on this side [using Stage 5 as a point of reference and pointing to the top row] 

and10 on this side [the bottom row].  
I: And what about Stage 25? 

S: 25 on the top and 1 black one and 25 on the bottom. 
I: And what about Stage 100? 

S: 100 on the top and a black one and 100 on the bottom. 

In two separate clinical interview sessions, Skype established two structural gen-
eralizations for the same pattern. While both generalizations were expressed in 
functional form, which enabled him to predict the structures of the stipulated far 
generalizing cases, various task constraints influenced the content of his two in-
cipient generalizations. For example, the black corner square on each stage in 
Figure 5 played an important role in the generalization that he used to describe 
Stages 10, 25, and 100 of his pattern, which he did not observe when he first 
dealt with the same pattern in Figure 1. The two separate but related interviews 
with Skype underscore how certain factors come into play when students engage 
in PG processing. 

DIFFERENT FACTORS THAT SHAPE PATTERN 

GENERALIZATION PROCESSING 
Figure 7 is a conceptual framework that takes into account various cognitive and 
noncognitive factors that shape PG processing. Fundamental differences in indi-
vidual learners’ PG processing can be due to differences in and the simultaneous 
layering of or complex connections among such factors, which influence various 
aspects of constructing, expressing, and justifying interpreted structures. 
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Figure 7. Factors that shape pattern generalization processing 

Natures and Sources of Generalization 
Several research results converge on the view that individual learners in some 
cases tend to generalize invariant relationships by paying attention on the given 
instances or stages in a pattern, while in other cases they tend to dwell on the 
generality of their inferred ideas, methods, or processes than on the objects them-
selves. One implication of such findings seems to suggest the need for students to 
be provided with every opportunity to reflect on their generalizing activity—that 
is, whether they are working with particular objects or working with general ide-
as and methods but with a clear and sustained focus on the need for justification. 

In one of his studies on older students’ mathematical induction, Harel (2001) 
carefully distinguishes between process pattern generalization (PPG) and result 
pattern generalization (RPG). In PPG, students establish regularities in an emerg-
ing process. In RPG, they dwell on perceived regularities that they infer on the 
available results. An example of a RPG is shown in Figure 8, which demon-
strates a student’s empirical-based conviction that his or her generalization about 
the product rule for logarithms is correct on the basis of several randomly drawn 
instances that enabled him or her to verify its validity.  

Pattern 
Generalization 

Natures and Sources 

Types of 
Structures Contexts 

Attention or 
Awareness Representing 
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log(3⋅ 4 ⋅ 7) = log84 =1.924.
log4+ log3+ log7 =1.924.
log(4 ⋅3⋅6) = log72 =1.857;
log4+ log3+ log6 =1.857.
∴ log(a1 ⋅a2 ⋅... ⋅an ) = loga1 + loga2 +...+ logan  

Figure 8. An empirical-driven RPG example involving the product rule for loga-
rithms (Harel, 2001, p. 180) 

In contrast, Figure 9 illustrates another student’s PPG on the same proposition 
noted in Figure 8, which reflects an indirect use of mathematical induction. 
(1) log(a1a2 ) = loga1 + loga2 log(a1a2a3) = loga1 + loga2 + loga3by definition. 

(2) log(a1a2a3) = loga1 + loga2 + loga3 . Similar to log(ax)  as in step (1), where this 
time ax = a1a2 . 

Then log(a1a2a3) = loga1 + loga2 + loga3 . 

(3) We can see from step (2) any log(a1a2a3...an ) = loga1 + loga2 + loga3  can be re-
peatedly broken down to loga1 + loga2 +...+ logan . 

Figure 9. A transformational-driven PPG example involving the product rule for 
logarithms (Harel, 2001, p. 180) 

Harel notes that while a RPG might initially motivate a PPG, the latter has a 
more transformational content than empirical, that is, there is 

(a) consideration of the generality aspects of the conjecture, (b) [an] ap-
plication of mental operations that are goal oriented and anticipatory—
an attempt to predict outcomes on the basis of general principles—and 
(c) [a sequence of] transformations of images that govern the deduction 
in the evidencing process. (Harel, 2001, p. 191) 

In other words, there are two different levels of evidence, and PPG goes beyond 
RPG since it focuses on aspects that involve general principles in order to antici-
pate and predict subsequent outcomes in a pattern.  

In a study conducted with a group of Grade 8 Japanese students (mean age of 
14 years), Iwasaki and Yamaguchi (1997) carefully illustrate differences between 
generalization of objects (GO) and generalization of method (GM). The students 
participated in a two-hour problem-solving session involving the two tasks 
shown in Figures 10 and 11. In part (1) of the Figure 10 algebraic task, they per-
formed calculations on the numbers using a trial-and-error strategy that assisted 
some of them to infer the mathematical relation “the sum of three numbers on the 
vertical direction in the frame is equal to that on the horizontal direction”. In part 
(2) of the same task, they moved the location of the frame several times to other 
parts on the calendar that also enabled them to verify the invariance of the in-
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ferred relationship. When they were asked to generalize, they pointed out the in-
variance of adding and subtracting by 1 and 7 to the central number in the frame 
with the central number seen as a variant since the frame was allowed to move 
freely on the calendar. They also saw the invariance of 1 and 7 in the context of 
how each triad of numbers in one direction appeared to them as being arranged in 
a particular way. In part (3) of the same task, they constructed new mathematical 
relationships on the basis of changing either the shape of the frame or the ar-
rangement of the numbers (e.g., rotating the frame by 45o). 

 
Figure 10. Numbers on the calendar task (Iwasaki & Yamaguchi, 1997, p. 108) 

In Figure 11, parts (2) and (3) of the geometric task encouraged some students to 
draw several pentagrams and to measure the five vertex angles with a protractor 
that helped them to infer that the sum of the angles measured 180º across the 
constructed examples. Several other students “realized the limitations” of the 
measurement approach, which then encouraged them to prove the statement in 
part (3) deductively. In this particular situation, they used a single drawn penta-
gram as a general icon or prototype that enabled them to transition in reasoning 
from the inductive to the deductive.  

 
Figure 11. The pentagram task (Iwasaki & Yamaguchi, 1997, p. 110) 

Based on the students’ thinking on the two tasks shown in Figures 10 and 11, 
Iwasaki and Yamaguchi note that 
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there are two types of generalization: one is the generalization of object 
in the algebraic situation, the other is that of method in the geometrical 
situation. In other words, in [the Figure 10 task], the object of one’s 
thinking such as the concrete number is generalized by the use of letter 
n. On the other hand, in [the Figure 11 task], the way of viewing itself is 
generalized. It realizes the change of inference form, that is, from induc-
tive to deductive. (Iwasaki & Yamaguchi, 1997, pp. 111-112) 

Several other research results articulate similar findings. Yerushalmy (1993) dis-
tinguishes between generalization of ideas (GI) and generalization from exam-
ples (GE). GI and GE represent two situations in which generalization processing 
is focused on constructing a more general statement from several specific ideas 
and developing a generalization drawn from observing particular cases or exam-
ples in a given set, respectively. However, in a GI, which “is assumed to be the 
most complex type of generalization” (Yerushalmy, 1993, pp. 68-69), it is not 
crucial to draw on examples since what matters more are the relevant ideas that 
can be dropped, ignored, relaxed, and/or combined in order to achieve a greater 
generality (cf. Holland, Holyoak, Nisbett, & Thagard, 1986; Yevdokimov, 2008). 
Drawing on their work with young and older students and teachers, Zazkis, 
Liljedahl, and Chernoff (2008) note that while a GE enables students to notice 
commonalities among examples, employing big numbers as a purposeful strategy 
can “serve as a stepping stone toward expressing generality with algebraic sym-
bols” (p. 13) and, thus, can help students to infer possible underlying structures.  

Types of Structures 
Recent studies that have documented ways in which learners engaged in figural 
PG processing underscore the following two core features of structures involving 
the given stages in a figural pattern: there is a clear unit of repeat; and the unit of 
repeat is the basis for multiplicative thinking, which involves iterating the unit of 
repeat, leading to the construction of a function-based generalization. Possible 
complications happen due to the interpretive nature of structural discernment, 
formation, and construction in exact terms that students tend to express in several 
different ways. 

Drawing on their patterning investigations with 2 to 7-year old children in-
volving repeating sequences of objects and informed by the available research 
evidence in the field, Clements and Sarama (2009) suggest the following PG 
learning trajectory actions among young children: (a) pre-explicit patterning, (b) 
pattern recognizing, (c) pattern fixing, (d) pattern extending, (e) pattern unit 
recognition, and (f) numeric patterning (pp. 195-198). In the pre-explicit pattern-
ing phase, two-year-old children have an implicit and approximate sense of what 
constitutes a pattern. In the pattern recognition phase, which takes place at 
around age 3, they begin to recognize a pattern. At age 4, the pattern fixing 
phase, they are able to fill in the unknown object in a repeating pattern in at least 
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three different ways. One way involves constructing their own repeating pattern 
in another location with a close eye on a given pattern involving two objects (i.e., 
duplicating). A second way involves adding elements at the end of a given row of 
repeating pattern involving two objects (i.e., extending). A third way involves 
duplicating far more complex repeating patterns beyond two objects. At age 5, 
the pattern extending phase, they can extend simple repeating patterns. In the pat-
tern unit recognition phase, which occurs around age 6, they begin to interpret, 
recognize, and construct a core unit of repeat for a given pattern, which also ena-
ble them to translate the same pattern in different media and in some cases create 
patterns of their own choice. At age 7, the numeric patterning phase, they are 
able to describe figural growth patterns numerically and translate between their 
figural and numerical representations. 

In several studies, Mulligan and her colleagues (e.g., Mulligan, Prescott, & 
Mitchelmore, 2004; Papic, Mulligan, & Mitchelmore, 2011, 2009) also note 
changes in structural representations among their samples of young children who 
dealt with repeating and nonrepeating patterning tasks in various contexts. Based 
on their empirical studies conducted with several different cohorts of Australian 
preschool and Grade 1 children (with ages ranging from 3.75 to 6.7 years), young 
children’s structural representations transition from the prestructural stage, fol-
lowed by emergent and then partial, before finally achieving the full stage of 
structural development. Of course, appropriate habituation lessons that focus on 
the notions of a common unit (of repeat) and relevant spatial concepts tend to 
support the development of, and growth in, multiplicative and functional think-
ing. Students in the prestructural phase often produce idiosyncratic responses that 
have little to no semblance of any kind of structure in both aspects of numerical 
count and spatial arrangement. Students in the emergent phase produce invented 
or approximate structures in either numerical count or spatial arrangement and 
are often influenced by what they find meaningful and relevant. In this phase, 
shape and not count appears to be a factor in the children’s structural discernment 
of a given task. Students in the partial phase produce at least one consistent and 
organized structural feature with some missing or incomplete necessary features. 
In the case of patterns, either shape or count is correctly accounted for but not 
both. Shape consistency without numerical consistency might indicate a valid 
recognition of a correct and replicable unit of repeat, which is central to any 
structural arrangement involving objects and sets of objects. Finally, students in 
the full stage of structural development exhibit responses that represent an orga-
nized, exact (versus approximate), and integrated interplay of all the relevant 
structural features (i.e., numerical count and spatial arrangement), which are 
deemed to be consistent and valid within their respective contexts.  

In several articles that have been drawn from their longitudinal studies with 
middle school students, Rivera and Becker (2011) provide an account of the ex-
istence of several different types of fully algebraically-useful structures relative 
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to figural PG tasks (e.g., Figure 1). Figural patterns involve shapes as the primary 
objects of generalization. As with all shapes in mathematics, they are analyzed in 
terms of subconfigurations or parts or components that operate or make sense 
within some interpreted structures. The term fully algebraically-useful structure 
fulfills all the requirement of a full stage of structural development and the addi-
tional constraint that an interpreted structure is conveyed through an explicit 
formula in function or closed form.  

Attending to, or Awareness of, Structure 
One very interesting strand of studies on generalization addresses the fundamen-
tal issue of the nature of learner-constructed structures in PG contexts. Should 
structures emerge over the course of their domains by comparing the most rea-
sonable number of particular cases? Or, should they be imposed first by relying 
on single generic cases or prototype models that can then be the basis for further 
construction of related instances or cases? Küchemann (2010) captures this fun-
damental issue in terms of the sequential versus generic approach to PG activity. 

Noss, Healy, and Hoyles (1997) and Küchemann (2010) emphasize the view 
that any kind of structural awareness would need to occur first in situations or 
“environments in which the only way to manipulate and reconstruct [the rele-
vant] objects is to express explicitly the relationships between them” (Noss et al., 
1997, p. 207). Küchemann (2010) recommends the use of PG tasks that are not 
always presented “in the form of sequential elements” because they tend to en-
gender empirical generalizations that are “divorced” from structures that produce 
them in the first place. Ainley, Wilson, and Bills (2003) point out as well that 
“term-by-term” patterns might “obscure the need for algebraic generalization” (p. 
15). Mason, Stephens, and Watson (2009) also distinguish between empirical 
counting and structural generalization. Küchemann (2010) proposes the use of 
PG tasks that can be “tackled generically” say, by “inspecting a single generic 
case,” where the primary focus of students’ attention is “directly on the search 
for structure” (Küchemann, 2010, p. 242; e.g., Figure 13) or equivalent structures 
that emerge as a consequence of the “semantically ambiguous nature” of the rel-
evant symbolic expressions of generality (Samson, 2011; Samson & Schäfer, 
2011).  

Drawing on their case studies with two 12 to 13-year-old UK students who 
engaged in PG in the context of a computer microworld, Noss et al. (1997) ex-
press the view in which “language as the mechanism for controlling objects” (in 
the dynamic microworld) can, in fact, “make the algebra of relationships between 
things semi-formal, concrete, [and] meaningful” (p. 207). Hence, instead of pre-
senting the Figure 1 pattern in terms of stages, individual students can be pre-
sented first with a generic stage that can help them infer a plausible general struc-
ture or “write a general procedure (i.e., a program)” (p. 211) that can “draw any 
term in the sequence…, [determine]how many matches would be needed…, 
[and] predict the number of matches for any terms of the sequence” (p. 214). 
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Based on their study, the authors note that the two students did not focus on the 
relevant numerical data. Instead, a “microworld’s activity structure supported—
perhaps even encouraged—a theoretical rather than a pragmatic approach, in 
which an elaboration of structure was a means to an (empirical) end, rather than 
an end in itself” (p. 230).  

Steele and Johanning’s (2004) PG research with eight US Grade 7 students 
centered around PG tasks that fit Küchemann’s (2010) recommended generic ap-
proach. However, while their findings underscore the need for students to build 
structural schemes as a way of establishing a PG, their data indicate a sequential 
(inductive) processing route in the construction of such structures. For example, 
7th grade student Cathy’s generalizing scheme, which enabled her to establish 
her formula (N ⋅ 4)− 4 = #  of squares for the pattern in Figure 12, started with the 

 grid, in which case she counted 8 shaded outside squares. Next she drew a 
 grid, a  grid, followed by a  grid, and counted the totals in each 

case. She then made the following claims below based on the diagrams she drew. 

 
Figure 12. square grid patterning task (Steele & Johanning, 2004, p. 74) 

In a  grid, 96 squares would be shaded.  
I got this because there are 25 squares to a side. But 4 squares, the cor-
ner ones, are shared so you don’t count them twice. I will use a smaller 
example to tell what I mean.  
If you count the corners twice, you get 12. If you don’t, you get 8. …. So 
knowing this information, the formula is  # of squares. You 
times n by 4 because a square has 4 sides that are all equal. You sub-
tract 4 because the corners are shared. (Steele & Johanning, 2004, p. 
74) 

Another possible complication with a generic approach to PG involves a situation 
called selective processing. A few studies conducted with elementary school 
children show a predilection towards either “impos[ing] a pattern by modifying 
or ignoring some elements in a given configuration” (Lee & Freiman, 2004, p. 

3×3
4× 4 5× 5 6× 6

NN ×

25× 25

(N ⋅ 4)− 4 =
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249) or engaging in a narrow and, thus, invalid, specializing on a single case. For 
example, among the 35 kindergarten Canadian children (ages 5 to 6 years) that 
Lee and Freiman (2004) interviewed in their PG study, 9 to 12 of them interpret-
ed some growing patterns with given initial stages as repeating sequences. Rivera 
(2010) also investigated 21 US second grade students’ PG ability involving the 
two related open-ended patterning tasks shown in Figures 13 and 14.  

 
Figure 13. Open-ended patterning task for second grade students (Rivera, 2013, 

p. 132) 
The students’ pattern extensions in the case of the Figure 14 task specialized on 
the second step without connecting all the pattern stages to the given first stage, 
which led them to answer 4, 5, and 6 squares for Stages 3, 4, and 5. The answers 
had no structure other than the fact that the students’ answers conveyed the use 
of the successor property (“after 3 squares comes 4, then 5, and then 6”). Even 
when Rivera (2010) modified the Figure 13 task so that instead of two stages 
they were given three stages in a growing L-shaped pattern shown in Figure 14, 
the results indicate that most of them still consistently ignored the first two stages 
and narrowly specialized on the third stage with only 2 out of 21 students pro-
ducing a reasonable structure for their emerging patterns.  
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Figure 14. Modified Figure 13 patterning task for second grade students (Rivera, 

2013, p. 132)  
Regardless of the initial context in which a PG task is framed, what seems to 
matter more is how individual learners attend to an emerging structure. The fol-
lowing theoretical framework below, taken from Mason and colleagues (Mason 
et al., 2009; Watson, 2009), emphasizes at least five different awareness levels or 
attentional states relative to the discernment, appreciation, and formation of 
structural generalizations that apply to both sequential and generic PG activity.  

♦ Holding wholes (gazing). 
♦ Discerning details (making distinctions). 
♦ Recognizing relationships (among specific discerned elements). 
♦ Perceiving properties (as generalities which maybe instantiated in specific 

situations). 
♦ Reasoning on the basis of identified properties.  

(Mason, Stephens, & Watson, 2009, p. 11) 
Holding wholes involves a certain manner of gazing, producing personally-
constructed images (i.e., propositions or diagrams) that need to be analyzed in 
more detail. At this awareness level, the focus is basically on “foregrounding and 
backgrounding structures inherent in the object of attention” (Watson, 2009, p. 
219). Graphs of functions, for example, can be noticed primarily at the level of 
their notational forms and overall shape and direction. Discerning details shifts 
the attention towards further analysis and deeper description. Parts are construct-
ed and described in detail depending on meaningfulness. Also, content may focus 
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on parts that either change or remain the same. Referring to the graphs of func-
tions, they may be investigated for symmetry, number and nature of the calculat-
ed intercepts, changes in the graphs when coefficients are modified by domain, 
etc.  

Recognizing relationships involves delineating and analyzing varying and 
invariant relationships more critically than before. Further, constructed (concep-
tual) relationships may be covarying, correlational, and/or causal along some di-
mensions. For example, graphs of linear functions can be further categorized by 
the nature of their slopes, graphs of polynomial functions can be explained in 
terms of the parity nature of their corresponding degrees, and behaviors of alge-
braic and transcendental functions can also be assessed for similarities and dif-
ferences.  

Perceiving properties marks the phase of explicating generalities. This phase 
also enables a further categorization of different objects and “general classes of 
related objects” (Watson, 2009, p. 220).  

Reasoning on the basis of the identified properties is the important phase in 
which empirical-based reasoning about specific objects and related objects is sit-
uated within a deductive reasoning context, which then enables the investigation 
of what, how, and/or whether other instances may belong to a well-established 
structure. Following a deductive model, structural understanding proceeds from 
the experiential to the formal, from generalizing within classes to abstracting that 
can include the most number of classes, and from the available objects to the 
generation and construction of “new objects and relations that might never be 
perceived except in the imagination” (Watson, 2009, p. 220). 

Representing Generalizations 
Representing—that is, explicitly communicating, expressing, and conveying—
PG in some recognizable medium (or media) range in form and content, from 
approximate, idiosyncratic, and unstructured expressions to exact, sophisticated, 
and structured systems that give meaning to constructed expressions. Bastable 
and Schifter (2008) note that some children tend to “use English, a natural lan-
guage, to describe relationships that are more frequently expressed with algebraic 
formalisms” (p. 175). For example, a Grade 4 student in their study articulated 
the following verbal observation regarding square numbers: “If you take two 
consecutive numbers, add the lower number and its square to the higher number, 
you get the higher number’s square” (p. 173). While the fourth-grade class induc-
tively verified the student’s claim on two near cases (2 and 3; 7 and 8), they also 
expressed their inference verbally. The authors note a finding drawn from a US 
second-grade class in which case students expressed their general understanding 
of square numbers in a verbal format. When the students in that particular class 
paid particular attention on their construction process, they all expressed their 
written conclusions verbally (e.g.: “square numbers go odd, even, odd, even;” “if 
you times a square number by a square number, you get a square number;” 
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“when you add a row at the bottom and a row to the side and make a corner, you 
get another square number”). 

Drawing on their findings with years 7-10 students (ages 12-15 years) in 
Australia, Stacey and MacGregor (2001) also articulate the importance and ne-
cessity of the “verbal description phase” in the “process of recognizing a function 
and expressing it algebraically” (p. 150). They underscore how some students 
experienced difficulties in “transitioning from a verbal expression to an algebraic 
rule,” especially those “students with poor English skills” who were either unable 
to “construct a coherent verbal description” or produce “verbal description[s that] 
cannot be [conveniently and logically] translated directly to algebra” (MacGregor 
and Stacey, 1992, pp. 369-370). Bastable and Schifter (2008) point out, however, 
the ”ambiguities of natural language [that] may, at times, cause concern” (p. 
175). For example, the following written verbal generalization of a US second 
grade student regarding square numbers, “take any square number, add two zeros 
to it, and you will get another square number,” actually used the word “add” to 
convey a sense of “concatenating” rather than adding in an operational sense (p. 
175).  

Another documented way of representing in PG contexts involves the use of 
tables. Carraher, Martinez, and Schliemann (2008), for example, initially asked a 
group of US Grade 3 students (ages 8-9 years) to use the data table of values 
shown in Figure 15 to help them make sense of the Separated Dinner Tables task 
and eventually obtain a direct expression for the pattern. The constructed gener-
alizations that the students developed ranged from additive-arithmetical to multi-
plicative-arithmetical generalizations. Vale and Pimentel (2010) also used tables 
in assisting their Grade 3 participants from Portugal to obtain PGs. However, 
they note that tables from patterns that only show totals and primarily encourage 
students to recursively establish outputs by a process of differencing “do not al-
low an understanding of the structure of the patterns” (p. 245). Instead, they pro-
pose a multi-representational approach that employs words, mathematical lan-
guage, and a structural generalizing table of values in order to help students focus 
on relationships that can be translated in variable form as direct expressions. 
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Figure 15. Separated dinner tables patterning task (Carraher et al., 2008, p. 9) 

Recent PG studies by Cooper and Warren (2011) and Britt and Irwin (2011) em-
phasize the significance of having students either engage in quasi-generalizing or 
use quasi-variables in which case expressing generalizations involves using “spe-
cific numbers and even to an example of any number before they can provide a 
generalization in language or symbols” (Cooper & Warren, 2011, p. 193) or 
“thinking of numbers themselves as variables” (Britt & Irwin, 2011, p. 152), re-
spectively. For example, Cooper and Warren’s (2011) work with Australian 
Years 2 to 6 students (ages 6-10 years) on figural growth patterns indicates stu-
dents’ success in establishing quasi-generalizations from tables. They also note 
that figural-driven quasi-generalizations tend to produce “more equivalent solu-
tions” and “better process generalizations than quasi-generalizations that relied 
on data tables alone (p. 198). In Britt and Irwin’s (2011) study, they note that a 
significant number of New Zealand Year 8 prealgebra students (mean age of 12 
years) who participated in their numeracy project that emphasized algebraic-
driven operational strategies seems to be far more successful than their counter-
parts in a control group on the basis of a test on basic arithmetical tasks that in-
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volves transferring relevant knowledge in a variety of situations and examples. 
The authors’ numeracy project primarily focused on “the development of aware-
ness of generality” (Britt & Irwin, 2011, p. 147) by emphasizing both the con-
struction of arithmetical relationships and the use of quasi-variables. Instruction, 
especially, focused on the many different ways in which arithmetical problems 
(e.g., find the sum of two whole numbers) can be dealt with by reflectively draw-
ing on their concrete experiences (e.g., with a ten-frame relative to an addition-
fact task). Eventually, the reflective experience enabled the students to acquire an 
understanding of some underlying structure or generalization such as the additive 
compensation strategy a+ b = (a+ c)+ (b− c)  on the basis of their manipulations 
with quasi-variables. The reported empirical studies of Cooper and Warren 
(2011) and Britt and Irwin (2011) demonstrate representational changes that tend 
to occur when PG activity is supported by students’ experiences with concrete 
models and numbers that are employed as quasi-variables, followed by words, 
and by the use of literal symbols and variables in algebra. 

In a series of papers, Radford (1999, 2000, 2001a, 2001b, 2003, 2006) em-
pirically demonstrates the semiotic emergence of direct or closed variable-based 
expressions in the context of culturally mediated activity. Semiotic emergence 
refers to ways in which expressions of generalizations come about “in processes 
of sign use” (Radford, 1999, p. 90) at least initially with others (teachers, stu-
dents) in joint activity using readily available tools and processes (e.g. shared 
language, notations, and practices). Results of his longitudinal study with a co-
hort of 120 Grade 8 students and their six teachers in Canada over the course of 
three years of classroom research indicate the existence of the following three 
types of direct expressions in the context of figural PG tasks: factual; contextual; 
and symbolic. The patterns in Figure 16 show three of several figural PG tasks 
that Radford used in his studies. The protocol involves asking them to construct 
near generalizations (e.g., Stages 9 and below) and far generalizations (e.g., 
Stages 10 and up) and then to convey a generalization for any stage or figure 
number in the pattern. 

 
Figure 16. Figural patterns in studies on generalization (Radford, 2000, p. 83) 

Radford distinguishes between arithmetical generalization and algebraic general-
ization. For example, one way of obtaining the total number of toothpicks needed 
to construct Stage 25 of pattern 1 in Figure 16 involves the painstaking recursive 
process of counting toothpicks figure after figure up to Stage 25, which exempli-
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fies an arithmetical counting strategy. However, algebraic strategies tend to mod-
el more efficient nonrecursive modes of counting because the primary source is 
often rooted in an interpreted multiplicative structure of a pattern and its parts 
(i.e., parts are themselves seen as multiplicative units in an emerging structure of 
the pattern). Having such a structure has the same effect as initially drawing on 
axioms in order to make sense of resulting propositions relevant to some (sets of) 
objects and their relationships.  

In the context of figural PG, Radford’s initial layer of structural generaliza-
tion is factual, that is, it is “a generalization of numerical actions in the form of 
an operational scheme that remains bound to the numerical level, nevertheless 
allowing the students to virtually tackle any particular case successfully” (Rad-
ford, 2001b, pp. 82-83). So, for example, one group of Grade 8 students in his 
study noticed that since the first two stages in pattern 1 of Figure 16 seem to fol-
low the sense “it’s always the next… 1 + 2, 2 + 3,” that allowed them to impose 
the factual structure of “25 plus 26” in the case of Stage 25 of the pattern. Here 
the multiplicative dimension pertains to the two growing composite parts corre-
sponding to the top and bottom rows of circles (versus the additive strategy of 
counting-all in which case circles are counted one by one and from stage to 
stage). Factual generalizations are often accompanied by the use of adverbs such 
as “the next” or “always,” including the effects of rhythm of an utterance and 
movement (e.g., a pointing gesture). While perhaps necessary in the beginning 
stage of generalizing, unfortunately, factual generalizations remain context-
bound and numerical and often draw on shared “implicit agreements and mutual 
comprehension” (Radford, 2001b, p. 83) among those who construct them in so-
cial activity.  

In the next structural phase of contextual generalization, reference to particu-
lar stages, rhythm, and pointing are all replaced by “linguistic-objectifying” ac-
tions that are performed not on a concrete stage but at the abstract level. For ex-
ample, the terms “add,” “the figure,” and “the next figure” in reference to the 
stages in pattern 1 of Figure 16 replace factual actions that depend heavily on 
context. In contextual generalizations, “the abstract object appears as being ob-
jectified through a refined term pointing to a non-materially present concrete ob-
ject through a discursive move that makes the structure of relevant events visi-
ble” (Radford, 2001b, p. 84). However, such abstract objects still remain context-
based on the particularities of the relevant concrete objects, hence, the use of the 
category “abstract deictic objects.” While the operational schemes have under-
gone objectification and the objects have transitioned into their abstract form, 
however, they are still connected to both the positional features and the individu-
al(s) that made them possible in the first place.  

The third, and final, structural phase of symbolic generalization exemplifies 
what Radford classifies as an algebraic generalization. Contra contextual general-
izations, symbolic or algebraic generalizations have overcome their spatial-
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temporal character, that is, they are “unsituated and temporal” and disembodied 
or desubjectified objects (Radford, 2001b, p. 86). The use of letters marks an en-
try into algebraic generalization. For example, in pattern 1 of Figure 16, a student 
in Radford’s study suggested and justified the formula , in which case 
the student employed the variable n within the context of an impersonal voice 
that has overcome the spatial, temporal, and positional constraints that character-
ize such variables in a contextual generalization. Further, desubjectification or 
disembodiment marks a further phase in algebraic generalization, where symbol-
ic expressions (n+ n)+1 and (n+1)+ n  in the context of pattern 1 in Figure 16 are 
not seen as different but equivalent actions. The full stage, in fact, necessitates a 
total decentration of such actions, where the dual relation between subject and 
object is “shattered” and the variables seen as “objects in a different way” and 
bearing “a different kind of existence” that is not “haunted” by the “phantom of 
the students’ actions” (Radford, 2001b, p. 87). 

Radford notes that the entry into, and presence of, variable-based generaliza-
tions do not necessarily convey meaningful algebraic generalizations. This claim 
underscores his much larger view in which the presence and use of letters do not 
necessarily “amount to doing algebra,” that “just as not all symbolization is alge-
braic, not all patterning activity leads to algebraic thinking” (Radford, 2006, p. 
3). There are students, for example, who produce symbolic generalizations on the 
basis of some “procedural mechanism” following a “trial-and-error” heuristic 
that they are sometimes unable to explain beyond the response “Uh… because it 
works!” on the basis of a number of additional extensional generalizations (Rad-
ford, 2000, p. 82). Radford (2006) categorizes this process as naïve induction. 
Also, there are those who produce recursively additive formulas (in the form 
Next = Current + Common Difference, which Radford (2006) classifies as arith-
metical generalizations), however, they are unable to use them correctly when 
confronted with a far generalization task. Even in situations when some students 
are able to verbalize regularities and talk about the general through the particular, 
in some cases their underlying understanding of the pattern under investigation 
appears to remain at either the iconical or indexical level in which case they fail 
to establish equivalent structures. Suffice it to say, PGs that yield symbolic vari-
able-based generalizations depend significantly on the context in which individu-
al learners understand variables and, more generally, sign use. 

We close this particular section by noting recent work that seems to indicate 
that a student’s embodied apprehension of objects in a pattern can also either 
hinder or support representational understanding (Samson & Schäfer, 2011). 
Samson (2011) and Rivera and Becker (2011) note the “inherent [and subtle] 
ambiguities in [the structure of] symbolic expressions of generality” (Samson, 
2011, p. 28). In the second year of Rivera and Becker’s (2011) three-year study 
with middle school students involving linear patterns, a number of US Grade 7 
students (mean age of 12 years) who acquired more understanding of the com-
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mutative property for multiplication interpreted the expressions  and  
to be referring to the same grouping of objects, which confused especially those 
who were generalizing numerically from a data table when they tried to justify 
their structures. Drawing on their study with a group of Grade 9 students in 
South Africa, Samson and Schäfer (2011) point out that the variable expression

 in reference to the pattern in Figure 16 can be interpreted either as two 
groups of  segments or as  copies of two segments. The recommen-
dation, of course, is not to prevent such situations from occurring but to encour-
age classroom discourse in ways that enable learners to “validate multiple visual-
ly mediated interpretations” of such patterns as a consequence of the “always-
already” embodied nature of generalizing. Hence, perception in representing 
generalizations is a central cognitive aspect in any account of structural generali-
zation formation, that is, in Samson and Schäfer’s (2011) words, while percep-
tion is “critically related to the manner of one’s interaction with perceptual ob-
jects, it also remains sensitive to both the phenomenological and semiotic aspects 
of the generalization process” (p. 42). 

Contexts in Generalizing 
Context matters. Ainley et al. (2003) investigated the significance of context and 
calculations in the representations of PGs among two high school groups of UK 
students (ages 11 to 12 years) who participated in clinical interviews that were 
conducted near the end of their first year of schooling. Figure 17 shows the PG 
task that they analyzed in some detail in their reported study.  

 
Figure 17. The tables and chairs patterning task (Ainley et al., 2003, p. 11) 

The authors found that the students’ generalizations fell under two different cate-
gories. One set of verbal statements provided general descriptions of an inferred 
context (e.g., “two on each table except for the ends, which is three,” “for every 
table there’s two chairs plus the other two that are on the end”). The other set of 
verbal statements utilized arithmetical calculations in order to obtain the total 
number of chairs that were needed for any number of tables (e.g., “just how 
many tables double that, and then, plus two for the ends,” “you take the tables 
and you times it by two and then plus two”). The author note that students who 
generalize on context alone might experience difficulty in obtaining a total count 
because the complexity of the accompanying verbal descriptions might not easily 
translate into algebraically useful expressions. Further, such cases involving con-

a× b b× a

2(n+1)
(n+1) (n+1)
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text-based responses tend to be narrowly confined to favored ways of seeing; it 
is, thus, likely that they will find other possibilities to be confusing and distract-
ing. The authors also note that students who generalize by drawing on both con-
text and calculations are easily able to articulate justifiable direct expressions. 
Thus, “generaliz[ing a] context is not sufficient to enable students to express rela-
tionships [symbolically] in algebra-like notation(s), and that generaliz[ing] the 
calculations that are required is a significant bridge that [can] support [them] in 
constructing meaning for a symbolic expression of the [inferred] relationships” 
(Ainley et al., 2003, p. 13). The authors suggest that any generalizing from con-
text to calculation can be initiated through, say, “adding an element to the task 
which signals clearly the need to describe a calculation (such as ‘Could you tell 
the caretaker how to work out how many chairs should get out of the store-
room?’)” (p. 15).  

Ellis (2007) also addressed the issues of context and domain in generalizing 
in her work with seven US Grade 7 prealgebra students. The students initially 
explored linear relationships in two everyday situations involving speed and gear 
ratios. They used physical gears to perform the ratio activity and the Sim-
CalcMathworlds program to make sense of speed. Based on the students’ re-
sponses and the teacher’s prompts in various aspects of the two activities, their 
PGs underwent a conceptual evolution from thinking about them as number pat-
terns (in discrete terms) to situating them in the context of quantitative relation-
ships (in continuous terms) that eventually supported and “encouraged the devel-
opment of more powerful general principles related to linearity” (Ellis, 2007, p. 
223). For Ellis, asking students to prove, appropriate to their level of proficiency, 
can be used “to help [them] generalize more effectively, rather than as an act that 
necessarily follows generalization” (Ellis, 2007, p. 224). Further, Ellis under-
scores the importance of problem solving situations that “focus on relationships 
between quantities instead of number patterns or procedures alone” since quanti-
tative relationships are more likely to support powerful and productive PGs than 
number patterns.  

Nathan and Kim (2007) investigated US Grades 6-8 students’ performance 
on discrete and continuous linear functions that were conveyed to them in graph-
ical and verbal contexts. Discrete linear function tasks pertain to problem situa-
tions in which individual given instances are explicitly stated and assumed to be 
related in some way, while continuous linear functions convey problem situations 
that have a continuous relationship among the relevant quantities. They found 
that the Grade 6 group was adept at far prediction, the Grade 7 group dealt with 
both far prediction and formula construction on similar levels of proficiency, and 
the Grade 8 group produced more correct formulas than far predictions. Further, 
they saw that while both the Grades 6 and 7 groups employed similar generaliz-
ing processes when they dealt with both far prediction and formula construction 
tasks, the Grade 8 group found formula construction tasks easier to accomplish 
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than calculating far prediction tasks in both discrete and continuous contexts. The 
authors noted as well that across grade level the students were more successful in 
situations when function tasks appeared to them in continuous form (i.e., as ver-
bal rules and line graphs) over situations when similar tasks were presented in 
discrete form (i.e., in the form of a list of cases and point-wise graphs). Their 
findings seem to suggest that when students are provided with both verbal and 
graphical representations for representing linear function contexts, then they may 
achieve better PGs in comparison with contexts that show either representation 
alone. 

CONCLUSION: TOWARDS A DISTRIBUTED VIEW OF PATTERN 

GENERALIZATION PROCESSING 
Performing PG on a single task involves tapping a complex set of predictable and 
unexpected factors that influences the manner in which interpreted structures are 
constructed, expressed, and justified. Each time learners such as Skype in the in-
troduction are confronted with a PG task, they will always find themselves navi-
gating through different components of the conceptual framework shown in Fig-
ure 8, and any route (i.e., sequential or narrowly connected paths) is never 
smoothly linear but graded due to learning (i.e. more training) and experience. If 
there is one converging observation that can be inferred from the studies dis-
cussed and highlighted in this article, it may very well be the case that the differ-
ence between an easy or familiar PG task and a nonroutine or unfamiliar one is 
fundamentally a matter of complex routes of connectedness that individual learn-
ers construct and reconstruct over time. Multiple entry points in PG are possible, 
which significantly and ultimately depend on individual learners’ (semiotic) con-
texts and other factors that help them build structures that they consider meaning-
ful and appropriate. Instruction, of course, is a type of cultural mediation that can 
be employed to make PG processing more equitable for all learners.  

Complications in PG ability happen because any interpreted structure is basi-
cally a function of its emergence in an individual learner’s complex system, from 
his or her perceptions of objects in a pattern to apprehensions and meanings that 
he or she infers on the limited external representations that often characterize PG 
activity. Hence, the primary issue in PG activity is not about whether students 
can generalize but how to design and sustain learning experiences that enable 
them to have the agility to choose sufficiently optimal connections between and 
among factors that bear on PG processing. Hence, a distributed view of PG situ-
ates the emergence of an interpreted structure in terms of “cooperative and com-
petitive” (Plaut, McClelland, Seindenberg, & Patterson, 1996, p. 56) factors. 
When individual learners appear to exhibit stable PG processing on a few tasks, 
it means that the “weights on connection between” factors are strong. However, 
adjustments and changes always occur based on “the statistical structure of the 
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environment [that] influences the behavior of the network” (Plaut et al., 1996, p. 
56) of factors that influence PG processing. Further, the following point below 
made by Plaut et al. (1996) applies to PG processing if we think of “items” in 
terms of “factors.”  

[T]here is no sharp dichotomy between the items that obey the rules and 
the items that don’t. Rather, all items coexists within a single system 
whose representations and processing reflect the relative degree of con-
sistency in the mappings for different items. (Plaut et al., 1996, p. 56) 

Hence, consistency is a central feature in PG processing, which depends on sev-
eral factors and ultimately on choices that an individual learner makes each time 
he or she is confronted with a PG task.  
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