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Quantifying and Predicting Momentum in Tennis Match via 
Machine Learning Approach
Cuantificación y predicción del momentum en partidos de tenis 
mediante un enfoque de aprendizaje automático

Abstract

This study aims to identify and analyze momentum shifts in tennis, developing a data-driven model to quantify 
and predict these shifts and assess their influence on match outcomes. Using data from 6 tournaments, including 
564 matches and over 135,000 points, this study constructed a momentum calculation model integrating 14 
weighted match factors such as point progression, server advantage, and player ranking differences. The model 
incorporates adjustments for set discontinuities and initial momentum based on player rankings to enhance 
predictive accuracy. Following data processing and validation, a Kappa consistency test was performed on the 2023 
Wimbledon Championship data, yielding a high alignment with actual outcomes (Kappa = 0.96). Using a Gradient 
Boosting Decision Tree (GBDT) regression model, the study achieved a high accuracy in predicting momentum 
shifts, identifying key variables such as serve advantage and score gaps as primary indicators of performance 
dynamics. This model further revealed that players’ momentum tends to stabilize at critical points, such as 40:30, 
while fluctuating more at disadvantageous scores. These findings highlight the model’s utility for pre-match 
analysis, enabling detailed insights into opponents’ tactical patterns and psychological responses under varying 
score conditions. Overall, this momentum model provides valuable applications for enhancing player preparation 
and in-game strategic adjustments, offering coaches and players a quantifiable tool to interpret and influence 
match outcomes.

Keywords: Result prediction, gradient boosting decision tree, sports performance analysis.

Resumen

El objetivo de este estudio es identificar y analizar los cambios de momentum en el tenis, desarrollando un modelo 
basado en datos para cuantificar y predecir estos cambios y evaluar su influencia en los resultados de los par-
tidos. A partir de datos de 6 torneos, que incluyen 564 partidos y más de 135 000 puntos, este estudio construyó 
un modelo de cálculo del momentum que integra 14 factores ponderados del partido, como la progresión de los 
puntos, la ventaja del servidor y las diferencias en la clasificación de los jugadores. El modelo incorpora ajustes 
para las discontinuidades de los sets y el momentum inicial basado en la clasificación de los jugadores para me-
jorar la precisión de la predicción. Tras el procesamiento y la validación de los datos, se realizó una prueba de 
concordancia Kappa con los datos del Campeonato de Wimbledon de 2023, la cual arrojó una alta coincidencia con 
los resultados reales (Kappa = 0,96). Utilizando un modelo de regresión con árboles de decisión potenciados por 
gradiente (GBDT), el estudio logró una alta precisión en la predicción de los cambios de momentum  e identificó 
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Introduction
With the integration of big data analytics into the 

sports industry, sports performance data collection 
and analysis have achieved unprecedented depth 
and precision, gaining widespread attention across 
professional, media, and fan communities. In recent 
years, metrics like win probability have become 
increasingly prominent in sports broadcasting (Duen 
& Peker, 2024), providing audiences with real-time 
insights into each player’s likelihood of success and 
enhancing the viewing experience. Tennis stands out 
due to its dynamic tactical shifts and intense point-
to-point momentum changes, making it a rich subject 
for performance analysis. A prime example is the 
2023 Wimbledon Men’s Singles Final, where 20-year-
old Spanish star Carlos Alcaraz defeated 36-year-
old legend Novak Djokovic. The match saw dramatic 
swings in momentum—from Djokovic’s dominance 
in the first set to Alcaraz’s pivotal tiebreak win in 
the second, and then a series of momentum shifts 
that led to Alcaraz’s victory. Such dynamic shifts 
sparked widespread discussions about the concept 
of “momentum” in sports. However, while momentum 
is often described as “strength or force gained by 
motion or by a series of events” (Merriam-Webster, 
2024), accurately measuring and analyzing it remains a 
challenge for both academic and sports communities. 
Therefore, defining momentum, identifying the factors 
influencing match flow, and predicting its impact on 
match outcomes are essential areas of performance 
analysis research in tennis (Sampaio et al., 2024). 
Relevant findings would hold significant value when 
informing coaches to refine tactical strategies and 
enabling players to better adapt to real-time changes 
during matches.

Research on tennis covers a wide range of 
areas, including player skill and tactics analysis, 
match outcome factors, match prediction, and 
sports betting. The focus on player performance 
has garnered significant attention, with extensive 
studies exploring pre-match predictions and post-
match analyses (Bayram et al., 2021). However, the 
necessity and significance of real-time momentum 
analysis during matches remain underexplored, 
likely due to the complexities and dynamic nature of 
capturing momentum shifts as they unfold. This gap 

highlights the need for a deeper understanding of 
how momentum influences the flow and outcome of 
matches, which could offer valuable insights for both 
players and coaches (Tognini & Perciavalle, 2022).

Defining momentum is challenging. Some scholars 
view it as a psychological state, reflecting a player’s 
confidence and drive during a match, while others 
consider it a technical and tactical advantage (Ahola 
& Dotson, 2014, Zheng Cao, 2011). On the other hand, 
tennis data provider defines it as “an exponentially 
weighted moving average of the leverage gained by 
a player” (Manuel, 2022). Dietl and Nesseler (2017) 
argue that players benefit from momentum as long 
as they control the match; once they lose control, 
their chance of winning subsequent sets diminishes 
significantly. Despite these differing perspectives, 
momentum clearly influences match outcomes. Real-
time momentum analysis, however, demands large-
scale, detailed match data alongside sophisticated 
data acquisition and processing tools to manage and 
analyze this information in real-time.

Quantifying and measuring momentum pose 
further challenges. Traditionally, momentum has been 
assessed based on score and performance sequences. 
For instance, Moss investigates whether the outcomes 
of service games were significantly associated with 
the outcomes of the receiving and next serving games 
that followed (Moss & O’Donoghue, 2015). However, 
with advancements in data analytics, more studies are 
employing big data and statistical models to quantify 
momentum shifts, capturing the dynamics and trends 
within matches for a more precise analysis of game 
flow. Zhong introduced a composite model integrating 
a Logistic Regression Model and a LASSO-based 
Sparse ARMAX Model to predict momentum shifts 
and guide strategic decisions during games (Zhong 
et al., 2024). Ahmed (2014) analyzed the relationship 
between a binomial probability distribution and 
the process of match play in tennis and constructed 
a probability model for two players of predictable 
abilities. Momentum analysis has also been explored 
across various sports, particularly in football and 
basketball. Noel et al. (2024) developed a data pipeline 
and indicated that momentum should be studied 
more from a feature/performance indicator point-
of-view and less from the view of the dependence of 

variables clave como la ventaja en el servicio y las diferencias en el marcador como indicadores principales de la 
dinámica del rendimiento. Este modelo reveló además que el momentum de los jugadores tiende a estabilizarse 
en puntos críticos, como el 40:30, mientras que fluctúa más en puntuaciones desfavorables. Estos hallazgos resal-
tan la utilidad del modelo para el análisis previo al partido, ya que permite obtener información detallada sobre 
los patrones tácticos y las respuestas psicológicas de los oponentes en condiciones de puntuación variables. En 
general, este modelo de momentum ofrece aplicaciones valiosas para mejorar la preparación de los jugadores y 
los ajustes estratégicos durante el partido, proporcionando a los entrenadores y a los jugadores una herramienta 
cuantificable para interpretar e influir en los resultados de los partidos.

Palabras clave: predicción de resultados, árboles de decisión potenciados por gradiente, análisis del rendimiento 
deportivo.
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sequential outcomes in the future. Mingjia Qiu (2024) 
designed a quantitative framework to accurately 
identify momentum in basketball games, and explored 
the role of momentum in games. Notably, Ötting et 
al. (2023) investigated the potential occurrence of 
momentum shifts in the dynamics of football matches.

However, despite these advancements, existing 
literature lacks comprehensive approaches for real-
time momentum analysis, particularly in tennis. 
Studies are often limited to retrospective analyses or 
are constrained by simplified models that overlook 
the complexity of in-game factors. Additionally, they 
tend to neglect situational variables, such as player 
condition, court type, and environmental factors 
which significantly influence momentum shifts in 
live matches (Wang & Lin, 2005; Martínez-Gallego et 
al., 2013). These gaps highlight the necessity for more 
advanced, adaptable models capable of analyzing and 
predicting momentum in real time, accommodating the 
multifaceted influences inherent in tennis matches.

Therefore, this study aims to develop a 
comprehensive model to quantify and predict 
momentum shifts in professional tennis matches using 
a machine learning approach. We hypothesize that 
the proposed momentum model, integrating player 
performance indicators and point-by-point dynamics, 
can effectively identify momentum shifts and predict 
match outcomes with high accuracy. The model is 
designed to offer both theoretical and practical value 
by enhancing our understanding of momentum as a 
quantifiable variable and providing actionable insights 
for tactical decision-making in competitive tennis.

Methodology
Sample and Data

The data from the study included detailed point-
by-point data of 564 men’s singles main draw matches 
during 2021-2023 U.S. Open and Wimbledon tournaments 
provided by Jeff Sackmann (2024) via Tennis Abstract 
(www.tennisabstract.com). In total, there were 135,110 
points played by 211 individual players.

Procedures and Statistical Analysis

Initially, missing value and outlier were detected 
to ensure data quality. For instance, missing values 
in the serve speed (mph) were treated as null speeds 
when calculating each match’s average serve speed, 
thereby maintaining the completeness and accuracy 
of dataset. Subsequently, cleaned point-by-point data 
were used to extract relevant indicators for analyzing 
player performance. The data processing workflow is 
illustrated in Figure 1.

Based on the existing literature and information in 
the raw data, summary statistics of 12 indicators were 
extracted to represent player’s match performance. 
Additionally, a ranking gap was included as opposition 
effect factor on performance (see Table 1). 

Research Framework

The study first developed a comprehensive research 
framework to capture, analyze, and predict momentum 

Figure 1. Performance indicator screening flow chart
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in tennis matches. Figure 2 provides an overview of the 
framework, detailing the key stages of the research 
process, from data preparation to model application. 
The process began with the extraction of key 
performance indicators, followed by the establishment 
of a mathematical model to quantify momentum. To 
validate the model, a consistency check was performed 
by comparing the player with the higher momentum 
at the end of each set to the actual match outcome. 
This validation step assessed the model’s alignment 
with actual results. Subsequently, a predictive model 
was developed using a Gradient Boosting Decision 
Tree (GBDT) regression approach. This model analyzed 
turning points within tennis matches, identifying areas 
where momentum shifts significantly impact player 
performance. The predictive model’s accuracy and 
interpretability were further evaluated to generate 
actionable tactical insights. These insights can be 
applied across various contexts, including pre-match 
analysis, in-match tactical adjustments, and post-
match reviews to optimize training and performance.

Tennis Momentum Model

In the modeling stage, the research transformed 
the weights into additive changes according to the 
different indicators with different impact weights.

The study combines this with the fact that research 
will use the ranking as an initialization momentum. The 
initialization of momentum scores in equations (1) to 
(3) is grounded in the use of ATP rankings, which serve 
as a proxy for pre-match strength and reputation, an 
approach that has been utilized in prior research to 
set player baseline states (Pham & Bufi, 2023). First, 
we will use the variable Mi(t) (the momentum of 
player i (the ith player)at time t (the tth time point)), 
represents the change in momentum of player i with 
time, M1(t) represents the change in momentum of 
player 1 with respect to time t, M2(t) represents the 
change in momentum of player 2 with respect to time 

t, p1 (pi is the rank of player i)denotes the ranking of 
player 1,  denotes the ranking of player 2. Thus, study 
can get the initialized momentum score, as shown in 
equations (1), (2), and (3):

M1(0) = αp1                (1)

M2(0) = αp2               (2)

Mi(0) = αpi                (3)

Equation (4) defines momentum as a recursive 
function over time, drawing on basic principles of 
temporal state propagation found in time-series 
models such as AR and ARMA. The additive momentum 
increments in equation (5) are inspired by feature-
based performance scoring systems common in sports 
analytics (Ma, 2024), where different actions (e.g., 
ace, break_point, point_won) contribute unequally 
to performance trends. As study traverse each time 
point t in the race, the momentum variable is updated 
according to equation (4):

Mi(t) = Mi(t-1)+∆Mi(t)        (4)

Whenever a player wins a point, his performance 
status is expected to improve and therefore his 
momentum should be elevated. Such increase is 
represented by an increment, as shown in equation (5). 
For instance, if the player wins a point, his momentum 
increases by a fixed value dj(j is the jth scoring item, and  
is the scoring points for scoring item ); Similarly, when 
player breaks serve successfully or hits an ace, this 
brings a lot of momentum, so his momentum should 
have a different increase. Our study can represent this 
increase using other increments, which research will 
set to d2, d3 respectively.

Table 1
Indicators Explanation Table

Index Definition
Results The match outcome, indicating whether the player1 won or play2 won
Aces The total number of serves that landed in the service box and were untouched by the opponent
DF The total number of consecutive faults during serve attempts, resulting in the loss of a point
1st_serve_success_rate The proportion of successful first serves relative to the number of serves
1st_serve_won_rate The proportion of points won on successful first serves
2nd_serve_won_rate The proportion of points won on second serves
net_pt_won_rate The proportion of points won at the net relative to net points played
break_pt_won_rate The proportion of break points successfully won by the player
winner_won_rate The proportion of points won by hitting winners (shots not touched by the opponent)
unf_err_rate The proportion of unforced errors committed relative to the total number of errors
average_distance_run The average distance covered per point during the match
average_won_rally_count The average number of strokes in rallies won by the player
average_speed_mph The average speed of all serves during the match
ranking_gap The difference between the player’s ranking and the opponent’s ranking
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∆Mi(t)=∑(j=1)dj                (5)

Furthermore, it was also assumed that the outcome 
of the previous game impacts the current game 
(Klaassen & Magnus, 2001). To reflect this, an initial 
momentum value is recalculated at the beginning 
of each game. This recalculation incorporates the 
player’s ranking and the weighted momentum value 
from the last point of the previous game, as shown 
in equation (6). Equation (6) introduces an inter-game 
adjustment mechanism based on weighted memory 
of previous performance, reflecting concepts from 
state transition models and psychological momentum 
theories (Ma, 2024), with the addition of a tunable 
weight β to model state carry-over. To balance the 
relationship between game and reflect players’ state 
adjustments, experiments determined the optimal 
weighting coefficient β=0.2. The equation for the initial 
momentum of each game is:

Mi(t) = αpi + βMi(t-1)+s             (6)

At this point, the study established a mathematical 
model that captures the flow of the situation as 
the game progresses. The model is represented by 
equation (7):

Mi(0) = αpi, t = 0

Mi(t) = αpi + βMi(t-1)+s,t>0 and server change

Mi(t) = Mi(t-1) + ∆Mi(t),t>0 and server not change

After getting the mathematical model of 
momentum, our study used python code to write 
the model and made the visualization of the data, 
taking d1=1, d2=1,d3=1,s=1, Here, in order to show more 
intuitively the tendency of the players’ momentum 
change when the match is in progress, this study 
introduced a concept of momentum difference, which 
is obtained by subtracting the momentum of player1 
and player2, and at the same time. 

To validate the model, a Kappa consistency test was 
conducted (Cohen, 1960). Momentum data from the 
31 matches of the 2023 Wimbledon tournament were 
extracted and processed into a binary classification: 
values greater than 0 indicate that Player 1 had, while 
values less than 0 indicate that Player 2. Our research 
then calculated the match outcome for each point 
based on the momentum and filtered the results to 
obtain set-level outcomes. A Kappa coefficient model 
was established to compare these results with the 
actual set outcomes (game_winner), conducting a 
Kappa consistency test to assess alignment.

The Kappa coefficient was utilized to assess the 
agreement between predicted results derived from 
the model and actual outcomes from the raw data. As 
a widely recognized metric for measuring correlation 
between categorical data, the Kappa coefficient was 
appropriate for this binary classification task. This 
method provided a robust measure of the model’s 
consistency and alignment with real-world results. 
According to the widely accepted Kappa coefficient 
interpretation standard proposed by Cohen (1960), a 
Kappa value below 0 indicates no agreement, 0–0.20 
indicates slight agreement, 0.21–0.40 indicates fair 
agreement, 0.41–0.60 indicates moderate agreement, 
0.61–0.80 indicates substantial agreement, and 
values above 0.81 indicate almost perfect agreement. 

Figure 2. The Structure of the Research Framework for Tennis Match Momentum Analysis

n

(7){



Quantifying and Predicting Momentum in Tennis Match via Machine Learning Approach

51

The Kappa value of 0.96 achieved in this study thus 
demonstrates an almost perfect alignment between 
the predicted and actual outcomes, validating the 
reliability of the proposed model. 

Momentum Prediction Model

The study also aimed to predict critical factors 
influencing match dynamics. Building on the concept 
of momentum differential, a threshold of 0 was 
set to identify “swings” or turning points within 
matches. The GBDT regression model was trained 
on the data to predict these momentum swings, 
and feature importance was analyzed to determine 
the key predictors of momentum shifts. Several 
configurations of the GBDT model were tested to 
optimize performance. The final model parameters 
are presented in Table 2. Then, the feature importance 
is determined by calculating the contribution of each 
feature to the splits across all decision trees. 

Table 2
Main Parameters

Parameter NameParameter ValueParameter NameParameter Value
Data Split 0.7 Min Samples 

Leaf 1
Number of Base 
Learners 100 Min Weight 

Samples Leaf 0

Learning Rate 0.1 Max Tree Depth 4
Min Samples 
Split 5 Max Leaf Nodes 30

To evaluate the effectiveness and generalization 
ability of the proposed momentum prediction model, 
several alternative machine learning algorithms were 
tested alongside GBDT. These included LightGBM, 
XGBoost, and K-Nearest Neighbors (KNN). All models 
were trained on the same dataset using identical 
features and hyperparameter tuning strategies. Their 
performance was assessed using three key metrics: 
mean absolute error (MAE), root mean square error 
(RMSE), and the coefficient of determination (R²). 
The results, presented in Table 3, show that the GBDT 
model achieved the MAE (0.659) and RMSE (0.979), and 
the highest R² (0.828), indicating strong predictive 
accuracy and goodness of fit. LightGBM and XGBoost 
yielded comparable results, with only marginal 
differences from GBDT. These findings suggest that all 
three gradient-boosting frameworks are suitable for 
momentum prediction tasks, with GBDT performing 
slightly better overall. In contrast, the KNN model 
demonstrated weaker predictive performance across 
all metrics. This significant gap indicates that KNN, 
which lacks the ability to model complex feature 
interactions and sequential dependencies, is less 
suited for the nuanced task of modeling momentum 
dynamics in tennis.

Overall, these results reinforce the effectiveness of 
the proposed GBDT-based model while confirming the 
robustness of gradient-boosted ensemble methods 
for this specific prediction problem.

Table 3
Model Comparison

Model MAE RMSE R²

GBDT 0.659 0.979 0.828

LightGBM 0.664 0.984 0.827

XGBoost 0.661 0.991 0.824

KNN 0.855 1.46 0.738

Results
Factor Analysis

To assess the selected indicators, the study first 
evaluated their orientation. It was determined that 
indicators such as ranking gap and double faults 
(DF) were negatively oriented, where lower values 
corresponded to better performance. Conversely, all 
other indicators were positively oriented. To ensure 
consistency in the weight analysis, negatively oriented 
indicators were inverted, aligning all indicators to 
follow a consistent trend.

Before proceeding with factor analysis, an 
independent sample T-test was performed (see Table 
3). The test for homogeneity of variances yielded a 
significant P-value of 0.024** for average serve speed, 
indicating a violation of the homogeneity assumption. 
Consequently, this indicator was excluded from 
subsequent analyses, leaving a total of 12 indicators 
for consideration.

To identify relevant features for the model, 
Pearson correlation coefficients were calculated 
between each indicator and the player score. The 
magnitude of these coefficients provided insight into 
which indicators were most strongly correlated with 
player performance. Based on this analysis, five key 
indicators were selected for momentum calculation 
model: initial ranking, right to serve, point scored, 
break point won, and ACE occurrence.

During the model development phase, the latest 
ATP rolling rankings (from one week prior to each 
tournament) were used as initial input values. The 
processed dataset included quantitative variables such 
as point_no, server (referring to the player currently 
serving), point_winner, game_winner, p1_ace, p2_ace, 
p1_winner, p2_winner, p1_double_fault, p2_double_
fault, p1_unf_err, p2_unf_err, p1_break_pt_won, and 
the result_gap from the previous point.In the modeling 
framework, result_gap served as the dependent variable, 
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while the remaining indicators were used as predictors. 
To better interpret the magnitude of the statistical 
differences between winning and losing players, effect 
sizes (Cohen’s d) were calculated alongside traditional 
significance tests.

Table 4 summarizes the statistical results for each 
performance factor, including F and P values, as well 
as corresponding effect sizes. Indicators such as 
Aces (d = 0.14), Distance Run (d = 1.50), and Winners 
Won Rate (d = 0.32) demonstrated varying degrees of 
impact. Particularly, Distance Run exhibited a large 
effect size, highlighting its relevance in distinguishing 
dominant performance patterns.

Kappa Coefficient Test

The Kappa coefficient of 0.96 demonstrates a nearly 
perfect alignment between the model’s calculated 
momentum advantage and the actual set outcomes, 
validating its reliability. The test’s significance levels 
(z = 33.081, p < 0.01) further confirm the statistical 
robustness of this alignment.

Model Testing Results and Evaluation

Figure 3 presents a partial prediction plot for the 
test dataset, comparing predicted values with actual 
values. In the plot, the blue line represents the true 
values, while the green line shows the predicted 
values. The model demonstrates a high degree of 
accuracy, as the predicted values closely follow the 
trend of the actual data, particularly around the 935th 
point of the season starting from the Round of 16. 
Some minor discrepancies are observed at smaller 
peaks and valleys, suggesting that while the model 
captures the general patterns effectively, there is 
room for refinement in specific intervals.

To systematically evaluate and address potential 
overfitting observed in Figure 3, the model was 
assessed using a 5-fold cross-validation approach. 
As shown in Table 5, the mean squared error (MSE), 
root mean squared error (RMSE), mean absolute error 
(MAE), and R² scores of the cross-validation set closely 
mirrored those of both the training and test sets. 
Specifically, the training set achieved an MAE of 0.576 
and an R² of 0.851, while the 5-fold cross-validation 
yielded an MAE of 0.609 and R² of 0.829. The test set 
recorded a comparable MAE of 0.659 and R² of 0.828. 
These minimal performance gaps indicate that the 
model generalizes well and does not exhibit signs of 
overfitting. Additionally, the RMSE difference between 
training (0.808) and test set (0.979) was small relative to 
the scale of the target variable, and the standardized 
effect size (Cohen’s d = 0.15) between the MAEs of 
training and test sets further confirmed negligible 
overfitting. Together, these results validate the 
stability and robustness of the proposed momentum 
prediction model.

Table 5
Model Comparison

Metric Training Set Cross-
Validation Test Set

MSE 0.653 0.749 0.959
RMSE 0.808 0.864 0.979
MAE 0.576 0.609 0.659
R² 0.851 0.829 0.828

For both the training and test sets, the corresponding 
values are illustrated in Figure 4. 

The close alignment between these metrics 
suggests that the model does not overfit the training 
data and maintains strong generalization capability. 

Table 4
Factor Analysis Index

Results (Standard Deviation)
F P Cohen’s d

1.0 0.0
Aces 5.803 8.203 0.567 0.455 0.14
Ranking gap(converted to positive) 57.673 57.673 0.000 1.000 –
DF 2.966 3.425 0.537 0.466 0.31
Double faults (DF) 0.063 0.098 3.300 0.074 * 12.14 ★
First serve success rate (%) 0.063 0.114 4.119 0.047** 10.86 ★
First serve points won rate (%) 0.084 0.085 0.094 0.760 11.83 ★
Second serve points won rate (%) 3.290 5.438 5.325 0.024** 0.22
Average serve speed 0.114 0.115 0.002 0.968 8.73 ★
Net points won rate (%) 0.179 0.191 0.157 0.693 5.40 ★
Break point conversion rate (%) 0.066 0.090 2.058 0.157 12.67 ★
Winners won rate (%) 0.090 0.078 0.836 0.364 0.32
Unforced error rate (%) 3.041 2.815 0.395 0.532 0.34
Average distance run 0.722 0.605 0.168 0.684 1.50

Note: ***, **, * represent the significance levels of 1%, 5%, and 10%, respectively. 
★ Values of d > 8 are likely inflated due to very small standard deviations (SD < 0.12).
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Figure 3. The Predicted Value Compared with The True Value

Figure 4. Comparison of Error Metrics between Train and Test Sets

While this level of performance is satisfactory, further 
parameter optimization or exploration of alternative 
algorithms could enhance predictive accuracy on 
unseen data.

Feature Importance

The analysis of feature importance provided 
insights into the relative impact of various factors on 
momentum shifts. Figure 5 illustrates the key predictors 
identified by the model. The server variable ranked 
as the most significant factor influencing momentum 
swings, followed by point_no, which represents the 
progression of the match, and point_winner, which 
indicates the winner of a specific point. These features 

were determined to have the greatest impact on 
predicting momentum dynamics during a match.

Model Application

Real-Time Momentum Visualization
To illustrate the model’s effectiveness, the final 

match of the 2023 Wimbledon tournament between 
Carlos Alcaraz and Novak Djokovic was selected for 
visualization (Figure 6).

The visualization shows that Djokovic initially 
held the momentum advantage, while Alcalaz gained 
control midway through the match, resulting in a 
significant momentum shift. The model accurately 
tracks this transition, with both players experiencing 
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Figure 5. Feature Importance Ratio

Figure 6. Momentum Visualization of the 2023 Wimbledon Men’s Final

sharp momentum changes at critical points, indicating 
a close contest. Alcaraz’s momentum eventually 
stabilized at a higher level, aligning with the actual 
match outcome, thereby demonstrating the model’s 
capability to depict shifts in competitive advantage 
over time. The momentum differential graph offers a 
clear view of each player’s relative advantage during 
the match. 

The model was further applied to other matches, 
such as a round-of-16 match between Carlos Alcaraz 
and Nicolas Jarry (Figure 7), to illustrate different 
momentum patterns. By adjusting the match_id in 
the model code, momentum trajectories for various 
matches can be generated, showcasing the model’s 
adaptability to different match dynamics.

This visualization depicts momentum patterns from 
another match in the tournament. Unlike the final, this 

match exhibited more consistent momentum patterns, 
with fewer abrupt shifts, highlighting the variability in 
competitive dynamics across matches.

Pre-Match Analysis and Opponent Profiling
The findings of this study demonstrate the model’s 

suitability for pre-match analysis and opponent 
profiling. The model was used to calculate momentum 
turning points for Carlos Alcaraz and Novak Djokovic 
under various score scenarios during the U.S. Open and 
Wimbledon tournaments from 2022 to 2023, providing 
valuable insights into their strategic tendencies and 
performance shifts.

Figure 8 presents the momentum turning points 
for both Carlos Alcaraz across 22 matches and Novak 
Djokovic across 26 matches. Positive_Turning_Points 
indicate moments where momentum shifts from 
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Figure 7. Momentum Visualization of a Round-of-16 Match

negative to positive, while Negative_Turning_Points 
represents shifts from positive to negative. For Carlos 
Alcaraz, at a score of 0:30, he encounters more negative 
turning points (75) than positive ones (62). Conversely, 
at 30:40, positive turning points (49) exceed negative 
ones (33). The lower sum values at scores such as 40:0, 
40:15, and 40:30 reflect fewer momentum fluctuations, 
indicating greater stability at these moments. For Novak 
Djokovic, the total number of momentums turning 
points for Novak Djokovic is highest at a score of 15:0 
(142), followed by 15:40 (132) and 15:15 (130). Negative 
turning points dominate at disadvantageous scores like 
0:40 and 0:30, while critical moments such as 15:40 and 
15:15 exhibit significant positive turning points.

Discussion
The primary objective of this study was to 

develop a comprehensive model for quantifying and 
analyzing momentum in tennis matches, addressing 
the challenges of capturing real-time trends and 
transforming the abstract concept of momentum 
into concrete, data-driven visual representations. 
Using data from six major tennis tournaments, this 
study successfully defined momentum and identified 
key influencing factors through factor analysis. This 
foundation enabled us to build a model capable of 
representing and calculating momentum shifts, which 
we visualized using real-time data. By incorporating 
the GBDT algorithm, the model demonstrated 
practical applications in identifying and analyzing 
momentum shifts throughout matches. Our analysis 
confirmed the critical role of momentum in tennis 
performance, offering practical recommendations for 
pre-match analysis, in-match tactical adjustments, 
and post-match reviews. Furthermore, the model 

showed potential for use in opponent research and 
preparation, providing new insights and tools for 
coaches and players.

A significant challenge addressed in this study was 
the quantification momentum, an inherently dynamic 
and elusive factor in sports. By integrating player 
performance metrics, such as serve success rates, 
ranking disparities, and point-by-point results, the 
model effectively captured momentum changes in 
real time, thus overcoming a key limitation in previous 
research. Application of the model to the 2023 
Wimbledon Championship demonstrated a strong 
alignment between momentum indicators and actual 
match outcomes, as evidenced by a Kappa coefficient 
of 0.96. This high consistency validates the model’s 
reliability, confirming the momentum can effectively 
represent match performance. These findings provide 
theoretical support for future momentum-based 
analysis and prediction in tennis.

Our findings align with previous research that has 
recognized momentum’s predictive ability in tennis 
(Moss & O’Donoghue, 2015). The model incorporated 
a wider range of dynamic factors, such as point-by-
point results, serve advantages, and match sequences, 
making momentum capture more comprehensive 
and accurate than current models (Lin et al., 2024). 
While Moss and O’Donoghue (2015) focused on serve 
game patterns, our approach expanded the scope to 
capture real-time momentum changes in every rally, 
providing a more detailed analysis of match flow. 
Furthermore, although Ahmed’s (2014) probabilistic 
model emphasized match outcome prediction, it 
lacked continuous momentum analysis. In contrast, 
our model integrates both predictive and descriptive 
capabilities. demonstrated higher accuracy in 
identifying momentum shifts and their impact on 
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Figure 8. Momentum Turning Points for Carlos Alcaraz and Novak Djokovic

match outcomes. This advancement enhances our 
understanding the temporal dynamics in tennis 
and provides greater accuracy in identifying and 
interpreting momentum shifts and their effects on 
match outcomes. 

From a practical perspective, the model offers 
actionable value for both coaches and players. For 
coaches, the visualization and quantification of 
momentum shifts can assist in real-time tactical 
decisions— for instance, determining the optimal 
timing for coaching interventions, adjusting player 
positioning strategies, or recognizing when an 
opponent is gaining momentum. Players can also 
use the model outputs to heighten their situational 
awareness during matches, allowing them to respond 
more effectively to turning points. Knowing when 

momentum is likely to shift enables players to 
manage psychological pressure and adapt their tactics 
accordingly. Post-match momentum analysis can 
further provide valuable feedback on performance 
patterns, helping players and coaching staff refine 
training and strategic planning.

The analysis of feature importance revealed that the 
server variable had the greatest impact on momentum 
shifts. This is consistent with conventional match 
analysis, where the server is often seen as having more 
control over the pace and dynamics of play. Players 
with a stronger serve are better able to influence 
momentum, particularly during critical moments when 
momentum shifts are most pronounced. The point_no 
variable also proved to be significant, with momentum 
shifts becoming more pronounced as the match 
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progresses. This suggests that factors such as physical 
endurance and psychological resilience become more 
critical in the later stages of the match. Specifically, 
turning points often occur in pivotal moments like the 
seventh game of a set or during tiebreaks, where the 
psychological stakes are particularly high. The point_
winner variable further underscores the importance of 
consistently winning points to build momentum, which 
influences the trajectory of the match. Players who 
accumulate consecutive points can generate significant 
momentum, which impacts overall match results.

Despite its contributions, this study has certain 
limitations. The accuracy of the model relies on 
the data quality and completeness, meaning 
that missing or incomplete data could affect the 
reliability. Additionally, there is potential to improve 
the predictive accuracy by exploring alternative 
algorithms. Furthermore, while the model primarily 
focuses on technical indicators, it does not fully 
account for tactical, physical, and psychological 
factors, limiting its comprehensiveness. Future 
research could integrate these elements to increase 
the model’s practical applicability.

The results of this study are significant both 
theoretically and practically. Theoretically level, 
our model offers a robust framework for sports 
performance analysis by quantifying momentum, 
opening new avenues for exploring how momentum 
interacts with psychological, tactical, and physical 
performance, not only in tennis but also across other 
sports. Practically, coaches and players can use the 
model to better understand key momentum shifts and 
make informed strategic adjustments. By pinpointing 
when and how momentum changes occur, players can 
anticipate critical moments and adjust their tactics 
in real-time. Additionally, post-match momentum 
reviews provide insights for refining training and 
improving overall performance.

In conclusion, this study developed a data-driven 
model for analyzing momentum, which not only visualizes 
momentum changes but also predicts their impact 
on match outcomes. By integrating multiple dynamic 
factors, the model enhances predictive capabilities, 
making it a valuable tool for pre-match analysis and in-
match tactical decision-making. These findings suggest 
that momentum is not solely a psychological concept 
but a quantifiable factor with a substantial impact on 
sports performance. Future research could expand on 
this model in incorporating additional variables, such 
as player fatigue and court conditions, to further refine 
momentum prediction. Ultimately, this study lays a 
solid foundation for the applying momentum in sports, 
with potential for broader applications across various 
competitive environments.

Conclusion
This study quantified momentum in tennis and 

modeled its impact on match outcomes by constructing 
a machine learning based model that captures 
real-time momentum shifts. Overall, momentum 
changes during matches played a substantial role 
in shaping player performance, especially at pivotal 
scoring moments. The turning points of momentum 
were closely associated with serve success, return 
effectiveness, and break points related performance 
indicators. Such findings evidence that momentum 
is not merely an abstract concept but a measurable 
factor that significantly influences match results. 
The results reveal the significance of understanding 
momentum when interpreting the performance of 
professional tennis players, informing adapted tactical 
decisions and training methodologies by coaches and 
players. The developed momentum model could serve 
as an efficient analytical tool for performance analysts 
during pre-match debriefing and post-match reviews. 
By integrating this model into long-term player 
development, coaches and performance analysts can 
systematically monitor players’ technical, tactical, and 
physical performance while considering individual 
variations across match environments.
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