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Abstract

This paper considers the flight dynamics of the ball in the sport of pickleball. Various simplifications are introduced 
according to the features of the game. These simplifications and some approximations enable straightforward coding to 
study aspects of the game such as the trajectory of the ball and its velocity. In turn, strategic questions may be addressed 
that have not been previously considered. In particular, our primary research question involves the preference between 
playing with the wind versus against the wind. It is demonstrated that playing against the wind is often preferable than 
playing with the wind.
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Resumen

Este artículo estudia la dinámica de vuelo de la pelota en el deporte del pickleball. Se introducen diversas 
simplificaciones en función de las características del juego, las cuales, junto con algunas aproximaciones, permiten una 
codificación sencilla para estudiar aspectos del juego como la trayectoria de la pelota y su velocidad. A su vez, se pueden 
abordar cuestiones estratégicas que no se habían considerado anteriormente. En concreto, la pregunta principal de 
investigación tiene que ver con la preferencia entre jugar con el viento o contra el viento. Se demuestra que jugar contra 
el viento es a menudo preferible en comparación a jugar con el viento.
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INTRODUCTION
Pickleball is a relatively new sport. It was invented 

in 1985, and in recent years its popularity has taken 
off. Pickleball was the fastest growing sport from 
2022 to 2023 in the United States with over 8.9 million 
participants (Sports & Fitness Industry Association, 
2024). According to a 2023 report from the Association 
of Pickleball Players (APP), nearly 50 million Americans 
have played pickleball at least once in the previous 
year (https://www.theapp.global). The game is popular 
across wide age cohorts at the recreational level. 
Pickleball also has various professional leagues and 
tours including Major League Pickleball (MLP).

Despite the popularity of the sport, there has been 
little quantitative research on pickleball. Gill & Swartz 
(2019) consider the impact of strong and weak links on 
success in doubles pickleball. It is the intention of this 
paper to add to the sparse literature with a specific 
aim of gaining a better understanding of pickleball 
flight dynamics. Albert et al. (2017) consider problems 
in sports analytics across major sports. 

The topic of projectile motion has a long and well-
studied history (Lubarda & Lubarda, 2022) The details 
are complex, especially when considerations are given 
to the impact of air resistance and wind. Projectile 
motion models typically involve special functions 
and differential equations. Such work is important 
to serious investigations such as ballistics. In sport, 
Chudinov (2022) considers issues of approximate 
projectile motion in the sports of golf, tennis and 
badminton. However, there does not seem to be any 
literature on pickleball flight dynamics; this paper 
attempts to provide some initial insights on this topic.

In the problem considered here, we take features 
of the sport of pickleball into account. This, together 
with additional assumptions simplifies our projectile 
motion model. The final model is straightforward to 
code so that various investigations involving pickleball 
may be undertaken. In particular, we look at the impact 
of the wind in pickleball. Pickleball is often played 
outdoors where the choice of ends, and understanding 
how to play in the wind become issues of strategy. Our 
primary research question involves the preference 
between playing with the wind versus playing against 
the wind where it is demonstrated that playing against 
the wind is preferable in many contexts. This problem 
in pickleball strategy does not seem to have been 
previously addressed.

In Section 2, we provide a description of the 
relevant details of the pickleball court, and features 
of interest. We also define the relevant input variables 
to the projectile motion model. In Section 3, the 
basics of the pickleball motion model are described. 
In particular, we explain how features and strategies 
in the sport allow us to calculate input variables that 
are not immediately available. In Section 4, we look 
at various pickleball applications. In particular, we 
investigate pickleball trajectory and pickleball velocity 

under various conditions. We then discuss a question 
of strategy in terms of whether it is better to play 
against the wind or with the wind. The work indicates 
that a strategic advantage is often conferred when 
playing against the wind. We conclude with a short 
discussion in Section 5. Details regarding modelling 
and simulations are left to the Appendix.

PROBLEM FORMULATION
Figure 1 provides the relevant details of the 

pickleball court and features of interest. The pickleball 
court is 44 feet long which is divided into two equal 
halves by a net. The net is 3 feet tall at the ends 
although this detail is not important for our motion 
model. 

In Figure 1, a launch point is depicted on the left 
side of the court. This is the location from which the 
player of interest strikes the pickleball. The location 
is marked x0 feet from the left endline and serves 
as an input variable for our investigation. We have 
the constraint x0 ∈ (0, 15) feet where we note that 
the 15-foot mark denotes the beginning of the non-
volley zone (i.e. the closest point to the net that the 
player should approach). The player strikes the ball at 
height y0. We consider y0 ∈ (1, 3) feet as a range for 
the height at which the pickleball is struck. Although 
the pickleball can be struck from higher heights, this 
range corresponds to the situation where the ball is 
hit in an upwards trajectory. Further, the ball is struck 
at launch angle θ. For our purposes, we consider θ ∈ 
(10°, 30°). An angle larger than 30° either represents a 
lob shot or a mishit, two shots that are not relevant to 
this investigation.

In Figure 1, we also depict the opponent (i.e. the 
point of interest) on the right side of the court whose 
horizontal position is given by z0 feet from the left 
endline. Later, we are interested in the opponent’s 
ability to hit the struck ball. Since the opponent is not 
advised to stand in his non-volley zone, we have the 
constraint z0 ∈ (29, 44). 

There are two quantities that are relevant to our 
investigation that are not depicted in Figure 1. First, 
the wind is a characteristic of interest. We make the 
assumption that the wind blows in a strictly horizontal 
direction. Our personal experiences in pickleball 
suggest that playing in winds which are less than 10 
mph is largely inconsequential. On the other hand, 
playing in wind speeds exceeding 20 mph is extreme 
and is a situation that many players avoid. Therefore, 
we are interested in wind velocities w (i.e. speed and 
direction) in the intermediate intervals (-20, -10) mph 
and (10, 20) mph.

https://www.theapp.global
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Figure 1. Configuration of the court and the variables related to the flight of the pickleball.

Second, we require the initial velocity v0 which 
is velocity that the pickleball is struck at the launch 
point. In the related sport of tennis, the average 
serves in men’s professional tennis (e.g. the ATP tour) 
is estimated at 120 mph. Unlike tennis, the pickleball 
paddle is rigid (without strings), and the ball is hard 
and compresses only negligibly. Therefore, the fastest 
pickleball shots reach instantaneous speeds of roughly 
60 mph. 1

Therefore, to summarize, the input variables that 
are relevant to pickleball flight dynamics are (x0, y0, θ, 
z0, w, v0).

PICKLEBALL MOTION MODEL
This section describes the basics of the pickleball 

motion model. More details including the associated 
physics of the model are provided in the Appendix.

For this investigation, it is convenient to express 
the location and the speed of the pickleball in both the 
x and y coordinates. We denote the location and speed 
of the pickleball by x and x0 in the horizontal direction, 
and by y and y0 in the vertical direction.

Referring back to the discussion and the notation in 
Section 1, the coordinate speeds are expressed more 
fully as

x’(t,θ,w,v0) and y’(t,θ,w,v0)			   (1)

The arguments of the speeds in (1) have common 
terms, namely the time from launch t, the launch angle 
θ, the wind velocity w and the initial velocity v0. Of 
course, and as described in the Appendix, the functions 
in (1) also depend on the features of the pickleball (e.g. 

weight, size and surface) which determine the impact 
of air resistance. Also, the force of gravity comes into 
play in the vertical speed but not in the horizontal 
speed. In our model, we ignore the impact of spin.

In (1) we note that the speed functions depend 
on the launch angle θ and the initial velocity v0. 
Since the initial coordinate speeds only depend on 
θ and v0 through the initial coordinate speeds, using 
trigonometry in (1), we may replace θ and v0 in x’ by 
v0 cos θ, and we may replace θ and v0 in y’ by v0 sin θ. 
However, we retain the excessive notation in (1) which 
is helpful in future considerations.

For the coordinate locations, these are expressed 
more fully as

x(x0, t, θ, w, v0) and y’(y0, t, θ, w, v0)		  (2)

The functions in (2) have the same arguments as 
in (1) except that the initial locations x0 and y0 also 
influence location at time t.

It may be noted that the relationship between 
location and velocity allows us to express the locations 
functions as x(x0, t, θ, w, v0) = x0 + ∫0

t x’ (s, θ, w, v0)ds and 
y(y0, t, θ, w, v0) = y0 + ∫0

t y’ (s, θ, w, v0)ds. However, these 
expressions do not assist our development since the 
integrands are intractable functions. 

A Pickleball Simplification

A primary interest in our research concerns the 
issue of playing in the wind; should you prefer to play 
with the wind or play against the wind?
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Figure 2. Trajectory of an optimally hit drive shot in four wind conditions w = -10 mph, w = 0 mph, w = 10 mph and w = 15 mph. 
Other input values are set at x0 = 11 feet, y0 = 3 feet and θ = 20 degrees.

Of course, in pickleball, there are various types of 
shots and these include lobs, dink shots, smashes, 
drops, drives, etc. For the time being, we are going to 
restrict our attention to drive shots.

With respect to drive shots, we simplify aspects 
of the motion model by considering some standard 
pickleball strategy. Referring to Figure 1, we assume 
that the player on the left-hand side of the court (i.e. 
the launch point) hits the ball as hard as possible 
such that the ball would remain in bounds if left 
untouched. This assumption is sensible for drive 
shots in pickleball. Players hit the ball hard because 
high speed shots pose difficulty for the opponent; in 
particular, the opponent has less time to react. Hitting 
the ball as described, means that the ball, if left 
untouched, would land on the endline on the right-
hand side of the court. Therefore, hitting the ball in 
this manner may be considered optimal for drive shots 
in pickleball.

We denote tb as the hypothetical time that it would 
take the hard-hit ball to bounce on the right endline. 
Because the length of the court is 44 feet, we can 
express this constraint as

y(y0, tb, θ, w, v0)  = 0, x(x0, tb, θ, w, v0) = 44	 (3)

With equations (3), we are going to investigate 
various cases involving the input settings x0, θ and w. In 
other words, x0, θ and w are values that are determined 
in advance. Therefore, (3) represents two equations in 
two unknowns, tb and v0. Using the model described in 
the Appendix and the associated numerical methods, 
we are able to solve for tb and v0. This is particularly 
helpful since these are two quantities for which little 
is known apriori.

Having solved for v0, we can then consider the 
equation 

x(x0,t,θ,w,v0) = z0				    (4)

for an unknown time t. Equation (4) addresses 
the time that it takes the ball from when it is struck 
to reach the opponent (i.e. the location of interest in 
Figure 1 which is z0 feet from the left endline).

From (4), we are able to solve for t. When t is small, 
this means that there is little time for the opponent to 
react with their return shot. Therefore, the shot would 
be a very good shot. Consequently, for wind speeds 
w and -w, we can assess whether it is better to play 
with or against the wind in the context of a drive. This 
problem is studied in Section 4.3.

APPLICATIONS

Pickleball Trajectory

Using the motion model described in the Appendix 
for drive shots and the associated numerical methods, 
we are able to compute both the horizontal location 
x(x0, t, θ, w, v0) and the vertical location y(y0, t, θ, w, 
v0) given the input variables. The resulting (x, y) 
coordinates taken over a sequence of times t allow us 
to produce trajectory plots. Note that our code allows 
us to do this over any set of input variables.

In Figure 2, we provide plots for input values x0 = 
11 feet (which corresponds to the middle of the left 
court), y0 = 3 feet (which is a typical height from where 
the ball is hit) and θ = 20 degrees (which is a typical 
launch angle). Four plots are provided; for wind speeds 
w = -10 mph, w = 0 mph (no wind), w = 10 mph and 
w = 15 mph. The initial velocity input v0 is evaluated 
according to the optimality conditions (3) described in 
Section 3.1.

In Figure 2, we observe that the trajectories for wind 
speeds w = 0, 10, 15 mph do not differ greatly. However, 
when playing against the wind (i.e. w = -10 mph), the 
pickleball flight has greater curvature with a higher 
arc. It appears that the pickleball (which is light) gets 
held up by the wind. Towards the end of the path when 
playing against the wind, the pickleball is moving more 
in a downward vertical direction than horizontally.
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Pickleball Velocity

We now consider an exercise with the same input 
values as given in Section 4.1. However, this time 
we calculate the velocity functions x0(t, θ, w, v0) and        
y0(t, θ, w, v0). We evaluate the coordinate velocities x’ 
and y’ for increasing times t. Then, the overall speed 
v is calculated via v = [(x’)2 + (y’)2]1/2. In Figure 3, we 
plot v versus the horizontal location x under the wind 
conditions w = -10 mph, w = 0 mph, w = 10 mph and       
w = 15 mph.

In Figure 3, we again observe that the condition of 
playing against wind (i.e. w = -10 mph) is significantly 
different from the other three cases. For example, the 
initial velocity v0 is greatest when playing against the 
wind. This is necessary in order for the shot to reach 
the right endline. When playing against the wind, 
we also observe greater initial deceleration (i.e. the 
slope of the velocity curve is steeper). On the other 
hand, when playing with the wind, the ball maintains 
a similar velocity throughout its path. Under all four 
wind conditions, we see that the pickleball speed 
is similar (approximately 24 mph) at the horizontal 
position 27 feet. The 27-foot position is close to the 
boundary of the non-volley zone (NVZ) on the right-
hand side of the court. From a playing perspective, 
this is interesting since the NVZ boundary is widely 
regarded as being the most strategic position. 

Strategy - Playing in the Wind

Here we return to the primary strategic question: 
is it better to play with the wind or against the wind?

As mentioned at the beginning of Section 3.1, 
there are various shots in pickleball. Some shots are 
infrequent (e.g. lob shots). Smash shots are also less 
common than other shots, although it is apparent that 
a trailing wind makes smash shots even faster (i.e. more 
difficult to handle). Alternatively, some shots are not 
greatly affected by the wind. For example, dink shots 
are soft shots taken close to the net; consequently, 
they are not in the air for long periods of time. A case 
could be made that it is preferable to play against the 
wind when hitting the common drop shot. Against the 
wind, a player needs to worry less about \popping 
up” their drop shot and having it smashed back. The 
drop shot will be pushed down by the wind. Therefore, 
before endorsing playing against the wind over playing 
with the wind, we need to look at the common drive 
shot.

We now consider the merits of playing against the 
wind versus playing with the wind in the context of 
drive shots. For drive shots, we assume that the player 
of interest has played optimally in the sense that the 
ball is hit hard enough to bounce on the right endline 
should it be left untouched.

Figure 3. Speed of an optimally hit drive shot in four wind conditions, w = -10 mph, w = 0 mph, w = 10 mph and w = 15 mph 
plotted against the horizontal location. Other input values are set at x0 = 11 feet, y0 = 3 feet and θ = 20 degrees.
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We use the general approach described in Section 
3.1 to evaluate the time that it takes the ball to reach the 
opponent (i.e. point of interest in Figure 1). If it takes 
less time to reach the opponent playing with the wind, 
then playing with the wind is preferred. If it takes less 
time to reach the opponent playing against the wind, 
then playing against the wind is preferred. We calculate 
time differences under the following conditions: x0 = 
0, 11, 15 feet (corresponding to endline, mid-court and 
non-volley zone) for the player executing the shot, z0 = 
29, 33, 44 feet (corresponding to non-volley zone, mid-
court and endline) for the opponent, launch angle θ = 
20 degrees and launch height y0 = 3 feet.

Letting tw denote the time in seconds that it takes 
the ball to reach the opponent with an assisting wind 
w ≥ 0, we consider the excess time difference Dw = tw 
- t-w that it takes for the ball to reach the opponent 
when playing with the wind compared to when playing 
against the wind. This is evaluated for the wind 
conditions w = 10 mph, w = 15 mph and w = 20 mph. 
Table 1 provides the results. We note that the time 
difference results in Table 1 are not greatly sensitive to 
minor modifications in the values of θ and y0.

Table 1.
Excess time difference in seconds Dw that it takes the drive shot to 
reach the opponent when playing with the wind compared to when 
playing against the wind where w is recorded in mph. 

x0 z0 D10 D15 D20

0 29 0.097 0.200 0.346

0 33 0.056 0.166 0.348

0 44 -0.302 -0.490 0.089

11 29 0.082 0.150 0.242

11 33 0.058 0.133 0.255

11 44 -0.230 -0.375 -0.568

15 29 0.075 0.131 0.203

15 33 0.059 0.124 0.223

15 44 -0.203 -0.332 -0.505
Note. The calculations are carried out using 9 combinations of x0 
and z0, and using typical settings θ = 20 degrees and y0 = 3 feet.

From Table 1, we observe that most of the Dw entries 
are positive. This suggests that there is a competitive 
advantage to playing against the wind when hitting the 
common drive shot. The ball reaches the opponent 
faster and there is less time for the opponent to react 
when playing against the wind. The only situations 
where Dw is negative correspond to the setting z0 = 44 
feet (i.e. the opponent is located on the right endline). 
This is noteworthy since it is generally accepted 
pickleball strategy to approach the non-volley zone, 
and not sit back at the right endline.

It is also interesting to look at the row with input 
settings x0 = 15 feet and z0 = 29 feet. This corresponds 
to the common situation where both players have 
approached the non-volley zone and are as close as 

possible. Here, we see that as the wind w increases, Dw 
increases. That is, the advantage of playing against the 
wind becomes greater as the wind blows harder. In fact, 
this same phenomenon is observed in all situations in 
Table 1 whenever z0 ≠ 44 feet.

DISCUSSION
This paper appears to be the first serious 

investigation of flight dynamics in the sport of 
pickleball. Our main contribution is one of strategy; we 
argue that playing against wind is generally preferable 
to playing with the wind. Previously, there appeared 
to be no consensus opinion on the preference. The 
work is based on a detailed physical model that takes 
into account relevant inputs including air resistance 
and wind. Python code is provided in a Github page 
(see the Appendix) that allows researchers to graph 
pickleball trajectories and velocities under various 
conditions.

Although the results provided in this paper 
correspond to our intuition and were derived from 
existing knowledge of projectile motion, it would be 
good to verify some of the results against video taken 
from pickleball matches. In future research, it may also 
be useful to consider additional wind environments 
such as crosswinds.
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APPENDIX
This section provides details regarding the 

pickleball motion model. It is a projectile equation 
which takes into account the air resistance and wind 
speed. A similar model has been used by Chudinov 
(2022) to study the projectile motion in three other 
sports: badminton, tennis and golf. Before presenting 
the full mathematical equation, we introduce and 
recall previous notation related to the pickleball and 
its motion:

	 m: mass

	 t: flight time

	 (x, y): coordinates

	 v = (x’, y’): velocity

	 v = |v|: speed

	 v0: initial speed

	 θ: initial launch angle

	 w: horizontal constant wind speed.

The equation for projectile motion follows from 
Newton's second law, where we only take into account 
the gravity and air resistance acting on the pickleball. 
The air resistance or the drag force is given by

						      (5)

where

•	 ρ is the density of the air,

•	 A is the cross-sectional area of the pickleball,

•	 v- (w, 0) is the relative velocity of the pickleball 
with respect to the wind,

•	 Cd  is the drag coefficient.

The drag coefficient varies with the Reynolds 
number

where U is the pickleball speed relative to the air, D 
is the diameter of the ball, ρ is the air density, and μ is 
the dynamic viscosity of the atmosphere. The relation 
between C_d   and R_e is in general a complicated 
nonlinear function that depends on the object shape, 
the object orientation, and characteristics of the air 
ow. Examples of C_d for a smooth cylinder and a 
smooth sphere are shown in Figure 4, which was taken 
from Munson et al. (1997).

Though the functional form of C_d  can vary 
depending on the situation, it is roughly proportional 
to R_e^(-1) for low Reynolds numbers while turbulence, 
or irregular air motion, is minimal. At larger Reynolds 
numbers, when there is significant turbulence, C_d  
evens out to stay roughly constant. As we can see from 
Fig. 4, the C_d  value for a smooth sphere stays on the 
same order of magnitude from a Reynolds number of 
about 103 onward, though with a dip around 105 before 
returning to its constant behaviour. Rougher surfaces 
tend to lower this threshold Reynolds number by 
increasing the turbulence around the sphere. Thus, we 
expect the holes in a pickleball to reduce the Reynolds 
number required to produce a roughly constant C_d to 
a value even lower than 103.

The parameters in our problem correspond to R_e ⪆. 
2.5 × 104, which is well above the threshold of 103. Thus, 
we conclude that C_d should stay roughly constant. In 
terms of the exact value of this constant, since we could 
not find any experimental measurements of C_d for 
pickleballs, we approximated the C_d value by treating 
the pickleball as a forward-facing wiffleball and using 
the experimental results found by Rossmann & Rau 
(2007). This gave us a constant C_d of approximately 
0.6 to use in Equation (5). The constant drag coefficient 
leads to a quadratic dependence of the drag force on 
the relative velocity instead of a linear one as often 
used in projectile equations. The full system then has 
the form 

→

→ →

→

https://doi.org/10.1119/1.2787013
https://doi.org/10.1119/1.2787013
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https://doi.org/10.1038/s41592-020-0772-5
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Figure 4. Examples of C_d for a smooth cylinder and a smooth sphere.
Source: Munson et al. (1997, p. 520)

(7)

where Cd is 0.6 as stated before, g is the gravitational 
constant 9,18 m/s2, ρ is a standard atmospheric 
density of 1.2 kg/m3, A is a standard cross-sectional 
area for a pickleball of π × (37 mm)2, m is a standard 
pickleball mass of 24 g, (x', y') denote the first order 
time derivatives which give the velocity and (x'', y'') 
denote the second order time derivatives which give 
the acceleration of the ball.

System (7) is solved numerically using the explicit 
Runge-Kutta method of order 5(4) provided by default 
in Scipy's (Virtanen et al., 2020) solve_ivp function 
(Dormand & Prince, 1980). The initial speed v0 given 
implicitly by conditions in (3) are determined by using 
Scipy's fsolve function to numerically solve for the 
roots of (x – 44, y), using the x(t), y(t) functions we 
found. The Python code used to accomplish this is 
hosted at https://github.com/0Strategist0/Pickleball.

It should be noted that though our choice of Cd is 
reasonable given the data we had and seems to produce 
pickleball trajectories and velocities similar to what is 
often measured, the true Cd for a pickleball could in 
principle vary by roughly ±0.5 in certain conditions. 
We did test several such alternate Cd values, and the 
exact numerical values for the time differences Dw 
we obtained could be signifficantly different than the 
ones shown in this paper. However, the signs of all 
these time differences were preserved after varying Cd, 
meaning that our main conclusions about whether to 
play with or against the wind seem to hold regardless 
of the specific value of Cd. It would be interesting for 
future work to obtain experimental data measuring 
Cd at a variety of Reynolds numbers, allowing for 
comparison with our model and the computation of 
more accurate numerical results.

https://github.com/0Strategist0/Pickleball

