Componentes de conocimiento del profesor para la enseñanza de la resolución de problemas en educación primaria

Juan Luis Piñeiro, Elena Castro-Rodríguez, Enrique Castro

Resumen


La importancia que presenta la resolución de problemas en la enseñanza y aprendizaje de la matemática es una premisa aceptada en la comunidad de educadores matemáticos. No obstante, los marcos que describen o caracterizan el conocimiento de los profesores sobre las matemáticas escolares han dado poca relevancia a este proceso. Partiendo de revisiones curriculares y teóricas, presentamos una organización del conocimiento del profesor de educación primaria sobre la resolución de problemas de matemáticas. En ella diferenciamos un conocimiento sobre la resolución de problemas del que emergen los componentes relativos al concepto de problema, proceso de resolución y disposición para afrontar un problema; y un conocimiento pedagógico sobre la resolución de problemas en el que distinguimos un componente referido al aprendizaje y otro a la enseñanza. Nuestra reflexión ratifica la idea que la naturaleza distinta de un proceso como la resolución de problemas provoca un conocimiento que los modelos han omitido.

Teacher knowledge components for teaching problem solving in primary education

Problem solving is central in teaching and learning of mathematics, an accepted premise in the community of mathematics educators. However, the frameworks that describe or characterize teachers' knowledge have given little relevance to this process. Starting from curricular and theoretical revisions, we present a proposal of organization for the knowledge of primary teacher about problem solving. We differentiate a knowledge of the process from which the components related to the concept of problem, resolution process and disposition to face a problem emerge; and a pedagogical knowledge where we distinguish a component referring to learning and another to the teaching of problem solving. Our reflection confirms the idea that the different nature of a process such as problem solving, causes a knowledge that the models have omitted.

doi: 10.30827/pna.v13i2.7876


Palabras clave


Problemas matemáticos; Resolución de problemas; Conocimiento del profesor; Educación primaria.

Citas


Abrantes, P. (2001). Mathematical competence for all: Options, implications and obstacles. Educational Studies in Mathematics, 47(2), 125-143.

Agre, G. P. (1982). The concept of problem. Educational Studies, 13(2), 121-142.

Ball, D. L., Hill, H. C. y Bass, H. (2005). Knowing mathematics for teaching: Who knows mathematics well enough to teach third grade, and how can we decide? American Educator, 29(1), 14-46.

Ball, D. L., Thames, M. H. y Phelps, G. (2008). Content knowledge for teaching. What makes it special? Journal of Teacher Education, 59(5), 389-407.

Borasi, R. (1986). On the nature of problems. Educational Studies in Mathematics, 17(2), 125-141.

Bromme, R. (1994). Beyond subject matter: A psychological topology of teachers’ professional knowledge. En R. Biehler, R. Scholz, R. Sträber y B. Winkelmann (Eds.), Didactics of mathematics as a scientific discipline (pp. 73-88). Dordrech, Países Bajos: Kluwer Academic Publishers.

Brown, S. I. y Walter, M. I. (2005). The art of problem posing. Mahwah, NJ: Lawrence Erlbaum.

Cai, J. (2010). Helping elementary school students become successful mathematical problem solvers. En D. V. Lambdin y F. K. Lester (Eds.), Teaching and learning mathematics. Translating research for elementary school teachers (pp. 9-14). Charlotte, NC: NCTM.

Carpenter, T. P., Fennema, E., Peterson, P. L. y Carey, D. A. (1988). Teachers’ pedagogical content knowledge of students’ problem solving in elementary arithmetic. Journal for Research in Mathematics Education, 19(5), 385-401.

Carrillo, J., Climent, N., Montes, M., Contreras, L. C., Flores-Medrano, E., Escudero-Ávila, D., … Muñoz-Catalán, M. C. (2018). The mathematics teacher’s specialised knowledge (MTSK) model. Research in Mathematics Education, 1-18.

Chapman, O. (2015). Mathematics teachers’ knowledge for teaching problem solving. LUMAT, 3(1), 19-36.

Charles, R. I., Lester, F. K. y O’Daffer, P. G. (1987). How to evaluate progress in problem solving. Reston, VA: NCTM.

Fennema, E. y Franke, M. L. (1992). Teachers’ knowledge and its impact. En D. A. Grows (Ed.), Handbook of research on mathematics teaching and learning (pp. 147-164). Nueva York, NY: Macmillan.

Foong, P. Y. (2002). The role of problems to enhance pedagogical practices in the Singapore. The Mathematics Educator, 6(2), 15-31.

Foster, C., Wake, G. y Swan, M. (2014). Mathematical knowledge for teaching probem solving: Lessons from lesson study. En S. Oesterle, P. Liljedahl, C. Nicol y D. Allan (Eds.), Proceedings of the Joint Meeting of PME 38 and PME-NA 36 (Vol. 3, pp. 97-104). Vancouver, Canadá: PME.

Garofalo, J. y Lester, F. K. (1985). Metacognition, cognitive monitoring, and mathematical performance. Journal for Research in Mathematics Education, 16(3), 163-176.

Goldin, G. A. y McClintock, C. E. (1979). Task variables in mathematical problem solving. Columbus, OH: Information Reference Center (ERIC/IRC), The Ohio State University.

Grønmo, L. S., Lindquist, M. y Arora, A. (2014). TIMSS advanced 2015 mathematics framework. En I. V. S. Mullis y M. O. Martin (Eds.), TIMSS advanced 2015 assessment frameworks (pp. 9-16). Chestnut Hill, MA: TIMMS & PIRLS International Study Center, Lynch School of Education, Boston College and IEA.

Kaur, B. (1997). Difficulties with problem solving in mathematics. The Mathematics Educator, 2(1), 93-112.

Kelly, C. A. (2006). Using manipulatives in mathematical problem solving: A performance- based analysis. The Mathematics Enthusiast, 3(2), 184-193.

Kilpatrick, J. (2016). Reformulating: Approaching mathematical problem solving as inquiry. En P. Felmer, E. Pehkonen y J. Kilpatrick (Eds.), Posing and solving mathematical problems (pp. 69-81). Nueva York, NY: Springer.

Kilpatrick, J., Swafford, J. y Findell, B. (2001). Adding it up: Helping children learn mathematics. Washington, DC: National Academy Press.

Lesh, R., English, L. D., Riggs, C. y Sevis, S. (2013). Problem solving in the primary school (K-2). The Mathematics Enthusiast, 10(1&2), 35-60.

Lester, F. K. (2013). Thoughts about research on mathematical problem- solving instruction. The Mathematics Enthusiast, 10(1&2), 245-278.

Lester, F. K. y Cai, J. (2016). Can mathematical problem solving be taught? Preliminary answers from 30 years of research. En P. Felmer, E. Pehkonen y J. Kilpatrick (Eds.), Posing and solving mathematical problems (pp. 117-135). Nueva York: NY: Springer.

Lester, F. K., Garofalo, J., & Kroll, D. L. (1989). Self-confidence, interest, beliefs, and metacognition: Key influences on problem-solving behavior. En D. B. McLeod y V. M. Adams (Eds.), Affect and mathematical problem solving (pp. 75-88). Nueva York, NY: Springer.

Liljedahl, P. (2016). Building thinking classrooms: Conditions for problem-solving. En P. Felmer, E. Pehkonen y J. Kilpatrick (Eds.), Posing and Solving Mathematical Problems (pp. 361-386). Nueva York, NY: Springer.

Mason, J. (2016). When is a problem…? “When” is actually the problem! In P. Felmer, E. Pehkonen y J. Kilpatrick (Eds.), Posing and solving mathematical problems (pp. 263-285). Nueva York, NY: Springer.

Mayer, R. E. y Wittrock, M. C. (2006). Problem solving. En P. A. Alexander y P. H. Winne (Eds.), Handbook of Educational Psychology (pp. 287-303). Nueva York, NY: Routledge.

McLeod, D. B. y McLeod, S. H. (2002). Synthesis - Beliefs and mathematics education: Implications for learning, teaching, and research. En G. C. Leder, E. Pehkonen y G. Törner (Eds.), Beliefs: A hidden variable in mathematics (pp. 115-123). Dordrecht, Países Bajos: Kluwer Academic.

NCTM. (1980). An agenda for action: Recommendations for school mathematics of the l980’s. Reston, VA: Author.

NCTM. (2000). Principles and standards for school mathematics. Reston, VA: Author.

Nipper, K. y Sztajn, P. (2008). Expanding the instructional triangle: conceptualizing mathematics teacher development. Journal of Mathematics Teacher Education, 11(4), 333-341.

OECD. (2013). Draft PISA 2015 Mathematics Framework. París, Francia: OECD Publishing.

Piñeiro, J. L., Castro, E. y Castro-Rodríguez, E. (2016). Conocimiento profesional para la enseñanza de la resolución de problemas en primaria: una perspectiva curricular. En J. A. Macías et al. (Eds.), Investigación en Educación Matemática XX (pp. 427-436). Málaga, España: SEIEM.

Polya, G. (1981). Cómo plantear y resolver problemas. DF, México: Trillas.

Ponte, J. P. y Chapman, O. (2016). Prospective mathematics teacher’s learning and knowledge for teaching. En L. D. English y D. Kirshner (Eds.), Handbook of international research in mathematics education (3a edición, pp. 275-296). Nueva York, NY: Routledge.

Posamentier, A. S. y Krulik, S. (1998). Problem-solving strategies for efficient and elegant solutions: A resource for the mathematics teacher. Thousand Oaks, CA: Corwin Press.

Rico, L. (2007). La competencia matemática en PISA. PNA, 1(2), 47-66.

Rico, L., Lupiáñez, J. L. y Molina, M. (2013). Análisis didáctico en educación matemática. Metodología de investigación, formación de profesores e innovación curricular. Granada, España: Comares.

Rowland, T., Huckstep, P. y Thwaites, A. (2005). Elementary teachers’ mathematics subject knowledge: The knowledge quartet and the case of Naomi. Journal of Mathematics Teacher Education, 8(3), 255-281.

Santos-Trigo, M. y Camacho, M. (2013). Framing the use of technology in problem solving approaches. The Mathematics Enthusiast, 10(1&2), 279-302.

Schmidt, W. H., McKnight, C. C., Valverde, G. A., Houang, R. T. y Wiley, D. E. (1997). Many visions, many aims. Volume 1. A cross-national investigation of curricular intentions in school mathematics. Dordrecht, Países Bajos: Kluwer Academic.

Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, FL: Academic Press.

Schoenfeld, A. H. (1992). Learning to think mathematically: problem solving, metacognition and sense making in mathematics. En D. Grows (Ed.), Handbook for research on mathematics teaching and learning (pp. 334-370). Nueva York, NY: Macmillan.

Schoenfeld, A. H. (2012). Problematizing the didactic triangle. ZDM, 44(5), 587-599.

Schroeder, T. L. y Lester, F. K. (1989). Developing understanding in mathematics via problem solving. In P. R. Trafton y A. P. Shulte (Eds.), New directions for elementary school mathematics. 1989 yearbook (pp. 31-42). Reston, VA: NCTM.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14.

Silver, E. A. (1994). On mathematical problem posing. For the Learning of Mathematics, 14(1), 19-28.

Smith, R. P. (2003). Representation in school mathematics: Children’s representations of problems. En J. Kilpatrick (Ed.), A research companion to principles and standards for school mathematics (pp. 263-274). Reston, VA: NCTM.

Thames, M. H. y Ball, D. L. (2010). What math knowledge does teaching require? Teaching Children Mathematics, 17(4), 220-229.

Wilson, J. W., Fernández, M. L. y Hadaway, N. (1993). Mathematical problem solving. En P. S. Wilson (Ed.), Research ideas for the classroom: High school mathematics (pp. 57-78). Nueva York, NY: Macmillan.


Texto completo: PDF

Refbacks





La descarga de archivos se rige por la licencia Creative Commons Reconocimiento-No comercial-Sin obras derivadas

ISSN: 1887-3987