Approaching the distributive law with young pupils

Nicolina A. Malara, Giancarlo Navarra

Resumen


This paper contributes to the research strand concerning early algebra and focuses on the distributive law. It reports on a study involving pupils aged 8 to 10, engaging in the solution of purposefully designed problem situations. These situations are organized to favor specifying the students’ solutions and to motivate a collective comparison of the arithmetic expressions that codify the solution processes. The study focuses on ways in which perception leads to different mental images that influence the choice of either the (a + b) x c or (a x c) + (b x c) the representation. It highlights that understanding these dynamics is a fundamental step for a meaningful learning of the property.

Aproximación a la propiedad distributiva con estudiantes jóvenes

Este artículo contribuye a la rama de investigación relativa al early algebra y se centra en la propiedad distributiva. Describimos un estudio que involucra estudiantes de 8 a 10 años, implicados en la resolución de problemas. Estos problemas se han organizado para favorecer un enunciado explícito de las soluciones propuestas por los alumnos y motivar una comparación colectiva de expresiones aritméticas que codifican los procesos de resolución. El estudio se centra en las formas en las que la percepción da lugar a diferentes imágenes mentales que llevan a elegir la representación (a + b) x c o (a x c) + (b x c). La comprensión de esta dinámica es un paso fundamental para un aprendizaje significativo de la propiedad.

Handle: http://hdl.handle.net/10481/4216


Palabras clave


Lenguaje de representación de procesos; Modelos mentales; Percepción; Propiedad distributiva

Citas


Malara, N. A., & Navarra, G. (2003a). ArAl project: Arithmetic pathways towards favoring pre-algebraic thinking. Bologna: Pitagora.

Malara, N. A., & Navarra, G. (2003b). Influences of a procedural vision of arithmetic in algebra learning. Paper presented at the Third European Congress on Mathematics Education-CERME 3, Bellaria, Italy.

Malara, N. A., & Navarra, G. (2004). “Brioshi” and other mediation tools employed in a teaching of arithmetic with the aim of approaching algebra as a language. In K. Stacey, H. Chick, & M. Kendal (Eds.), The teaching and learning of algebra: The 12th ICMI study (Vol. 2, pp. 412-419). Norwood: Kluwer Academic Publishers.

Mok, I. A. C. (1996). Progression of students' algebraic thinking in relation to the distributive properties. Unpublished doctoral dissertation. London: University of London.

Tirosh, D., Hadass R., & Movshovich-Hadar N. (1991). Overcoming overgeneralizations: The case of commutativity and associativity. In F. Furinguetti (Ed.), Proceedings of the 15th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 310-315). Assisi: University of Assisi.

Vermeulen, N., Olivier, A., & Human, P. (1996). Students' awareness of the distributive property. In L. Puig & A. Gutiérrez (Eds.), Proceedings of the 20th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 379-386). Valencia: University of Valencia.


Texto completo: PDF (English)

Refbacks





La descarga de archivos se rige por la licencia Creative Commons Reconocimiento-No comercial-Sin obras derivadas

ISSN: 1887-3987