Analysis of the underlying cognitive activity in the resolution of a task on derivability of the absolute-value function: two theoretical perspectives

Luis Roberto Pino-Fan, Ismenia Guzmán, Vicenç Font, Raymond Duval

Resumen


This paper presents a study of networking of theories between the theory of registers of semiotic representation (TRSR) and the onto-semiotic approach of mathematical cognition and instruction (OSA). The results obtained show complementarities between these two theoretical perspectives, which might allow more detailed analysis of the students’ performance.

Análisis de la actividad cognitiva subyacente en la resolución de una tarea sobre la derivabilidad de la función valor absoluto: dos perspectivas teóricas

En este artículo se presenta un estudio de networking of theories, entre la teoría de los registros de representación semióticos (TRRS) y el enfoque onto-semiótico de la cognición e instrucción matemáticos (OSA). Los resultados obtenidos revelan complementariedades entre estas dos perspectivas teóricas cuya aplicación simultánea permitiría hacer análisis más pormenorizados de las producciones de los estudiantes.

Handle: http://hdl.handle.net/10481/44148

WOS-ESCI

 


Palabras clave


Análisis cognitivo; Conexión de redes de teorías; Derivada; Enfoque onto-semiótico; Teoría de los registros de representación semiótica; Valor absoluto

Citas


Artigue, M., Bartolini-Bussi, M., Dreyfus, T., Gray, E., & Prediger, S. (2005). Different theoretical perspectives and approaches in research in mathematics education. In M. Bosch (Ed.), Proceedings of the fourth Congress of the European Society for Research in Mathematics Education (pp. 1239-1243). San Feliu de Guixols, Spain: CERME.

Asiala, M., Brown, A., DeVries, D., Dubinsky, E., Mathews, D., & Thomas, K. (1996). A framework for research and curriculum development in undergraduate mathematics education. In J. Kaput, A. H. Schoenfeld, & E. Dubinsky (Eds.), Research in collegiate mathematics education II (pp. 1-32). Providence, RI: American Mathematical Society.

Bikner-Ahsbahs, A., & Prediger, S. (2010). Networking of theories?an approach for exploiting the diversity of theoretical approaches. In B. Sriraman & L. English (Eds.), Theories of mathematics education: Seeking new frontiers (pp.483-506). New York, NY: Springer.

Duval, R. (1995). Sémiosis et pensée: registres sémiotiques et apprentissages intellectuels [Semiosis and human thought: Semiotic registers and intellectual learning]. Berne, Switzerland: Peter Lang.

Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1-2), 103-131.

Duval, R. (2008). Eight problems for a semiotic approach in mathematics education. In L. Radford, G. Schubring, & F. Seeger (Eds.), Semiotics in Mathematics Education: Epistemology, history, classroom and culture (pp. 39-61). Rotterdam, The Netherlands: Sense Publishers.

Eco, U. (1976). Tratado de semiótica general [A theory of semiotics]. Barcelona, Spain: Lumen.

Font, V., Godino, J. D., & Gallardo, J. (2013). The emergence of objects from mathematical practices. Educational Studies in Mathematics, 82(1), 97-124.

Font, V., Trigueros, M., Badillo, E., & Rubio, N. (2016). Mathematical objects through the lens of two different theoretical perspectives: APOS and OSA. Educational Studies in Mathematics, 91(1), 107-122.

Godino, J. D., & Batanero, C. (1994). Significado institucional y personal de los objetos matemáticos [Institutional and personal meanings of mathematical objects]. Recherches en Didactique des Mathématiques, 14(3), 325-355.

Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM-The International Journal on Mathematics Education, 39(1), 127-135.

Godino, J. D., Font, V., Wilhelmi, M., & Lurduy, O. (2011). Why is the learning of elementary arithmetic concepts difficult? Semiotic tools for understanding the nature of mathematical objects. Educational Studies in Mathematics, 77(2), 247-265.

Hjelmslev, L. (1943). Prolegomena to a theory of language. Madison, WI: University of Wisconsin Press.

Peirce, C. S. (1978). The collected papers of Charles Sanders Peirce. Cambridge, MA: The Belknap Press of Harvard University Press.

Pino-Fan, L. (2014). Evaluación de la faceta epistémica del conocimiento didáctico-matemático de futuros profesores de bachillerato sobre la derivada [Evaluation of epistemic facet of didactic-mathematical knowledge of future high school teachers on the derivative function] (Unpublished doctoral thesis). University of Granada, Spain.

Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for connection theoretical approaches: First steps towards a conceptual framework. ZDM, 40(2), 165-178.

Radford, L. (2008). Connecting theories in mathematics education: Challenges and possibilities. ZDM, 40(2), 317-327.

Tsamir, P., Rasslan, S., & Dreyfus, T. (2006). Prospective teachers’ reactions to right-or-wrong tasks: The case of derivatives of absolute value functions. Journal of Mathematical Behavior, 25(3), 240-251.


Texto completo: PDF (English)

Refbacks





La descarga de archivos se rige por la licencia Creative Commons Reconocimiento-No comercial-Sin obras derivadas

ISSN: 1887-3987