Efecto de los macronutrientes en modelos animales de enfermedad periodontal: una revisión sistemática

María Dolores Navarro Hortal, Cristina Bernal Moreno, Alfonso Varela López

Resumen


Objetivos: La enfermedad periodontal es una de las enfermedades orales crónicas más comunes en todo el mundo y representa un importante problema de salud pública en muchos países. Las enfermedades periodontales incluyen periodontitis crónica y periodontitis agresiva que generalmente se debe a la inflamación de la encía causada por infecciones bacterianas. La nutrición podría ejercer un papel fundamental ya que participa en diferentes afecciones y enfermedades inflamatorias. Hasta ahora, solo algunos investigadores han investigado el papel de los nutrientes en el desarrollo y la progresión de la enfermedad periodontal, pero los resultados obtenidos a menudo son difíciles de comparar debido a la heterogeneidad de los estudios.

Métodos: Este documento revisa sistemáticamente la literatura disponible en bases de datos hasta Febrero de 2018 sobre la relación entre macronutrientes y el desarrollo y progresión de enfermedades periodontales (periodontitis y gingivitis) en animales, con particular atención a los posibles mecanismos implicados en estas patologías. Resultados: Se encontraron un total de 5.484 publicaciones en la base de datos Pubmed. El análisis del título y resumen permitió seleccionar 88 artículos potenciales de acuerdo con los criterios de selección. No se encontraron artículos duplicados. La selección y lectura del texto complejo condujo a una cantidad final de 32 artículos.

Conclusiones: Entre todos los macronutrientes analizados, aquellos que tienen algún efecto sobre el estrés oxidativo o el sistema inmune parecen ser importantes para la prevención de la enfermedad periodontal o la mejoría de la enfermedad periodontal. Por un lado, hay evidencia a favor de un papel positivo de la proporción de ácidos grasos n-3 en la dieta debido a sus efectos antioxidantes e inmunomoduladores. Por otro lado, las dietas ricas en grasas saturadas o hipercalóricas aumentan el estrés oxidativo o promueven la inflamación, por lo que deben evitarse.


Palabras clave


periodontitis; dieta; lípidos; carbohidratos; proteínas

Citas


Poulsen HE, Loft S, Prieme H, et al. Oxidative DNA damage in vivo: relationship to age, plasma antioxidants, drug metabolism, glutathione-S-transferase activity and urinary creatinine excretion. Free Radic Res. 1998; 29(6):565–571.

Schifferle RE. Periodontal disease and nutrition: separating the evidence from current fads. Periodontol 2000. 2009; 50:78–89.

Van der Velden U, Kuzmanova D, Chapple IL. Micronutritional approaches to periodontal therapy. J Clin Periodontol. 2011; 38 Suppl 11: 142–158.

Torres de Heens GL, Loos BG, van der Velden U. Monozygotic twins are discordant for chronic periodontitis: clinical and bacteriological findings. J Clin Periodontol. 2010; 37(2):120–128.

Park JB, Han K, Park YG, Ko Y. Association between alcohol consumption and periodontal disease: the 2008 to 2010 Korea National Health and Nutrition Examination Survey. J Periodontol. 2014; 85(11):1521–1528.

Bergström J, Eliasson S, Dock J. Exposure to tobacco smoking and periodontal health. J Clin Periodontol. 2000; 27(1):61–68.

Hugoson A, Ljungquist B, Breivik T. The relationship of some negative events and psychological factors to periodontal disease in an adult Swedish population 50 to 80 years of age. J Clin Periodontol. 2002; 29(3):247–253.

Van der Velden U, Abbas F, Armand S et al. Java project on periodontal diseases. The natural development of periodontitis: risk factors, risk predictors and risk determinants. J Clin Periodontol. 2006; 33(8):540–548.

Joshipura KJ, Willett WC, Douglass CW. The impact of edentulousness on food and nutrient intake. J Am Dent Assoc. 1996; 127(4):459–467.

Mojon P, Budtz-Jørgensen E, Rapin CH. Relationship between oral health and nutrition in very old people. Age Ageing. 1999; 28(5):463–468.

Boyd LD, Lampi KJ. Importance of nutrition for optimum health of the periodontium. J Contemp Dent Pract. 2001; 2(2):36–45.

Schifferle RE. Nutrition and periodontal disease. Dent Clin North Am. 2005; 49(3):595–610, vii.

Neiva RF, Steigenga J, Al-Shammari KF and Wang HL. Effects of specific nutrients on periodontal disease onset, progression and treatment. J Clin Periodontol. 2003; 30(7):579–589.

van der Putten GJ, Vanobbergen J, De Visschere L, Schols J, de Baat C. Association of some specific nutrient deficiencies with periodontal disease in elderly people: a systematic literature review. Nutrition. 2009; 25(7-8):717–722.

Galvão MP, Chapper A, Rösing CK, Ferreira MB, de Souza MA. Methodological considerations on descriptive studies of induced periodontal diseases in rats. Pesqui Odontol Bras. 2003; 17(1):56–62.

Moskow BS, Wasserman BH, Rennert MC. The effect of a high carbohydrate diet on the production of periodontal lesions in the gerbil. J Periodontol. 1969; 40(12):721–724.

Huang Y, Guo W, Zeng J et al. Prediabetes enhances periodontal inflammation consistent with activation of toll-like receptor-mediated nuclear factor-κB pathway in rats. J Periodontol. 2016; 87(5):e64-74.

Macri E, Lifshitz F, Ramos C et al. Atherogenic cholesterol-rich diet and periodontal disease. Arch Oral Biol. 2014; 59(7):679–686.

Azuma T, Tomofuji T, Endo Y et al. Effects of exercise training on gingival oxidative stress in obese rats. Arch Oral Biol. 2011; 56(8):768–774.

Sanbe T, Tomofuji T, Ekuni D, Azuma T, Tamaki N, Yamamoto T. Oral administration of vitamin C prevents alveolar bone resorption induced by high dietary cholesterol in rats. J Periodontol. 2007; 78(11):2165–2170.

Tomofuji T, Kusano H, Azuma T, Ekuni D, Yamamoto T, Watanabe T. Effects of a high-cholesterol diet on cell behavior in rat periodontitis. J Dent Res. 2005; 84(8):752–756.

Yoneda T, Tomofuji T, Kunitomo M et al. Preventive effects of drinking hydrogen-rich water on gingival oxidative stress and alveolar bone resorption in rats fed a high-fat diet. Nutrients. 2017; 9(1):pii:E64.

Fujita Y, Maki K. High-fat diet-induced obesity triggers alveolar bone loss and spontaneous periodontal disease in growing mice. BMC Obes. 2016; 3:1.

Shikama Y, Kudo Y, Ishimaru N, Funaki M. Possible involvement of palmitate in pathogenesis of periodontitis. J Cell Physiol. 2015; 230(12):2981–2989.

Branchereau M, Reichardt F, Loubieres P et al. Periodontal dysbiosis linked to periodontitis is associated with cardiometabolic adaptation to high-fat diet in mice. Am J Physiol Gastrointest Liver Physiol. 2016; 310(11):1091–1101.

Li Y, Lu Z, Zhang X et al. Metabolic syndrome exacerbates inflammation and bone loss in periodontitis. J Dent Res. 2015; 94(2):362–370.

Muluke M, Gold T, Kiefhaber K et al. Diet-induced obesity and its differential impact on periodontal bone loss. J Dent Res. 2016; 95(2):223–229.

Blasco-Baque V, Serino M, Vergnes JN et al. High-fat diet induces periodontitis in mice through lipopolysaccharides (LPS) receptor signaling: protective action of estrogens. PloS One. 2012; 7(11):e48220.

Zhou Q, Leeman SE, Amar S. Signaling mechanisms in the restoration of impaired immune function due to diet-induced obesity. Proc Natl Acad Sci U S A. 2011; 108(7):2867–2872.

Bullon P, Quiles JL, Morillo JM et al. Gingival vascular damage in atherosclerotic rabbits: hydroxytyrosol and squalene benefits. Food Chem Toxicol. 2009; 47(9):2327–2331.

Chen S, Lin G, You X et al. Hyperlipidemia causes changes in inflammatory responses to periodontal pathogen challenge: implications in acute and chronic infections. Arch Oral Biol. 2014; 59(10):1075–1084.

Bullon P, Morillo JM, Ramirez-Tortosa MC, Quiles JL, Newman HN, Battino M. Metabolic syndrome and periodontitis: is oxidative stress a common link? J Dent Res. 2009; 88(6):503–518.

Cavagni J, Wagner TP, Gaio EJ, Rêgo RO, Torres IL, Rösing CK. Obesity may increase the occurrence of spontaneous periodontal disease in Wistar rats. Arch Oral Biol. 2013; 58(8):1034–1039.

Kırzıoğlu FY, Fentoğlu Ö, Bulut MT et al. Is a Cholestrol-Enriched Diet a Risk Factor for Alveolar Bone Loss? J Periodontol. 2016; 87(5):529–538.

Bullon P, Battino M, Varela-Lopez A et al. Diets based on virgin olive oil or fish oil but not on sunflower oil prevent age-related alveolar bone resorption by mitochondrial-related mechanisms. PLoS ONE. 2013; 8(9):e74234.

Vardar-Şengül S, Buduneli N, Buduneli E et al. Dietary Supplementation of omega-3 fatty acid and circulating levels of interleukin-1β, osteocalcin, and c-reactive protein in rats. J Periodontol. 2006; 77(5):814–820.

Araghizadeh N, Paknejad M, Alaeddini M, Minaii B, Abdollahi M, Khorasanie R. The efficacy and prophylactic characteristics of omega-3 fatty acids in experimental gingivitis in rats. Iran J Basic Med Sci. 2014; 17(2):87–92.

Balci YuceH, Akbulut N, Ocakli S, Kayir O, Elmastas M. The effect of commercial conjugated linoleic acid products on experimental periodontitis and diabetes mellitus in Wistar rats. Acta Odontol Scand. 2017; 75(1):21-29.

Kesavalu L, Vasudevan B, Raghu B et al. Omega-3 fatty acid effect on alveolar bone loss in rats. J Dent Res. 2006; 85(7):648–652.

Kesavalu L, Bakthavatchalu V, Rahman MM et al. Omega-3 fatty acid regulates inflammatory cytokine/mediator messenger RNA expression in Porphyromonas gingivalis-induced experimental periodontal disease. Oral Microbiol Immunol. 2007; 22(4):232–239.

Bendyk A, Marino V, Zilm PS, Howe P, Bartold PM. Effect of dietary omega-3 polyunsaturated fatty acids on experimental periodontitis in the mouse. J Periodont Res. 2009; 44:211–216.

Reeves PG, Nielsen FH, Fahey GC Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993; 123(11):1939–1951.

Corbee RJ, Booij-Vrieling HE, van de Lest CH et al. Inflammation and wound healing in cats with chronic gingivitis/stomatitis after extraction of all premolars and molars were not affected by feeding of two diets with different omega-6/omega-3 polyunsaturated fatty acid ratios. J Anim Physiol Anim Nutr. 2012; 96(4):671–680.

Zipkin I, Baer PN, Hawkins GR, Zucas SM, Mantel N. The effect of fluoride and dietary protein levels on calculus formation, alveolar bone loss, selected salivary constituents and fluoride deposition in the bones and teeth. J Periodontol. 1970; 41(8):430–437.

Seto H, Toba Y, Takada Y et al. Milk basic protein increases alveolar bone formation in rat experimental periodontitis. J Periodontal Res. 2007; 42(1):85–89.

Johnson RB, Thliveris JA. Effect of low-protein diet on alveolar bone loss in streptozotocin-induced diabetic rats. J Periodontol. 1989; 60(5):264–270.

Mavropoulos A, Rizzoli R, Ammann P. Different responsiveness of alveolar and tibial bone to bone loss stimuli. J Bone Miner Res. 2007; 22(3):403–410.

Breivik T, Gundersen Y, Fonnum F, Vaagenes P, Opstad PK. Chronic glycine treatment inhibits ligature-induced periodontal disease in Wistar rats. J Periodontal Res. 2005; 40(1):43–47.

Shaw JH. Influence of casein replacement by amino acid mixture on experimental dental caries in rats and on the periodontal syndrome in rice rats. J Dent Res. 1966; 45:1810–1814.

Moskow BS, Rennert MC, Wasserman BH. Interrelationship of dietary factors and heredity in calculus formation and periodontal lesions in the gerbil. J Periodontol. 1973; 44(2):81–84.

Rose WC, Oesterling MJ, Womack M. Comparative growth on diets containing ten and 19 amino acids, with further observations upon the role of glutamic and aspartic acids. J Biol Chem. 1948; 176(2):753–762.


Texto completo: PDF (English)

Refbacks



Fecha de actualización: 11- 03-2018

ISSN: 2340-9894


Licencia de Creative Commons
Hasta el año 2017 los contenidos están publicados bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Licencia de Creative Commons
Desde el año 2018 los artículos publicados en esta revista se distribuyen con la licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.