Ruta sencilla para la preparación de hidrogeles sensibles al pH mediante el uso de proteínas de clara huevo en soporte de alginato para la encapsulación de probióticos

Younos Jalilpour, Bahram Abdollahzade, Golnaz ParviziFard, Mohammad Aghazadeh, Abed Zahedi Bialvaei, Hossein Samadi Kafil

Resumen


Objetivos: En el presente trabajo se comparó el uso de proteínas de clara de huevo en soporte de alginato y alginato de calcio para la formulación.

Material y Métodos: Tras la encapsulación de microorganismos en proteínas de clara de huevo en alginato, se evaluaron ensayos de supervivencia y liberación en diferentes condiciones. Para el análisis se han utilizado la microscopio electrónico con escáner y la espectroscopia infrarroja de transformada de Fourier.

Resultados: Los resultados muestran el alto potencial de este tipo de formulación en la protección de los probióticos frente a las condiciones ácidas del estómago, por el aumento significativo en la supervivencia de las bacterias. Nuestro estudio demostró que la viabilidad de L. casei y L. acidophilus era mucho menor, sin embargo, con la encapsulación de las bacterias con proteínas de clara de huevo en alginato aumentaron significativamente su supervivencia especialmente para L. casei. La hinchazón y el comportamiento de contracción de las proteínas de clara de huevo en cápsulas de alginato en diferentes pH mostraron que la hinchazón de la cápsula en el agua destilada en términos neutros tenía más capacidad de inflación que una posición similar en términos de acidez gástrica.

Conclusion: el uso de proteínas de clara de huevo-alginato para la encapsulación de probióticos mejora la estabilidad de estos microorganismos en condiciones adversas simuladas del medio gástrico.


Palabras clave


Encapsulación; probióticos; hidrogeles inteligentes; alginato; proteínas de clara de huevo

Citas


Fioramonti J, Theodorou V, Bueno L. Probiotics: what are they? What are their effects on gut physiology? Best Pract Res Clin Gastroenterol. 2003;17(5):711-724.

Jabbari V, Khiabani MS, Mokarram RR, et al. Lactobacillus plantarum as a Probiotic potential from Kouzeh Cheese (Traditional Iranian Cheese) and Its Antimicrobial Activity. Probiotics Antimicrob Proteins. 2017;9(2):189-193.

Jabbari V, Mokarram RR, Khiabani MS, et al. Molecular Identification of Lactobacillus acidophilus as a probiotic potential from traditional doogh samples and evaluation of their antimicrobial activity against some pathogenic bacteria. Biomed Res -india 2017;28(4):1458-1463.

Moghaddam MZ, Nahaei MR, Kafil HS, Safaeyan F. Bacteriocins of Four Lactobacilli Species Isolated from Yogurt can Inhibit Growth and Verotoxins Production in E. coli O157: H7. J Pure Appl Microbiol. 2014;8(6):4517-4524.

Henriksson A, Khaled AKD, Conway PL. Lactobacillus Colonization of the Gastrointestinal Tract of Mice After Removal of the Non-Secreting Stomach Region. Microb Ecol Health Dis. 1999;11(2): 96-99.

Dahroud BD, Mokarram RR, Khiabani MS, et al. Low intensity ultrasound increases the fermentation efficiency of Lactobacillus casei subsp.casei ATTC 39392. Int J Biol Macromo. 2016;86:462-467.

McFarland LV. Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. American J Gastroenterol. 2006;101(4):812-822.

Shah NP. Functional cultures and health benefits. Int Dairy J. 2007;17(11):1262-1277.

Schoebitz M, Ceballos C, Ciamp L. Effect of immobilized phosphate solubilizing bacteria on wheat growth and phosphate uptake. J Soil Sci Plant Nutr. 2013;13(1)1-10.

Lee KY, Mooney DJ. Alginate: Properties and biomedical applications. Prog Polym Sci. 2012;37(1):106-126.

Goh CH, Heng PWS, Chan LW. Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr Polym. 2012;88(1):1-12.

Sun J, Tan H. Alginate-Based Biomaterials for Regenerative Medicine Applications. Mater. 2013;6(4):1285-1309.

Alleoni ACC. Albumen protein and functional properties of gelation and foamin. Scientia Agricola. 2006;63:291-298.

Livney YD. Milk proteins as vehicles for bioactives. Cur Opin Colloid Interf Sci. 2010;15(1–2):73-83.

Doherty SB, Auty MA, Stanton C, Ross RP, Fitzgerald GF, Brodkorb A. Survival of entrapped Lactobacillus rhamnosus GG in whey protein micro-beads during simulated ex vivo gastro-intestinal transit. Int Dairy J. 2012;22(1):31-43.

Gunasekaran S, Ko S, Xiao L. Use of whey proteins for encapsulation and controlled delivery applications. J Food Engin. 2007;83(1):31-40.

Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y. Protein Nanoparticles as Drug Delivery Carriers for Cancer Therapy. Biomed Res Int. 2014;2014:12.

Yamamoto T, Juneja LR, Hatta H, Kim M. Hen Eggs: Basic and Applied Science. Taylor & Francis; 1996.

Alderton G, Fevold HL. Direct crystallization of lysozyme from egg white and some crystalline salts of lysozyme. J Biol Chem. 1946;164:1-5.

Mukhopadhyay S. Removal of Salmonella Enteritidis from commercial unpasteurized liquid egg white using pilot scale cross flow tangential microfiltration. Int J Food Microbiol. 2010;142(3):309-17.

Rao AV, Shiwnarain N, Maharaj I. Survival of Microencapsulated Bifidobacterium pseudolongum in Simulated Gastric and Intestinal Juices. Can Instit Food Sci Technol J. 1989;22(4):345-349.

Callow JA, Osborne MP, Callow ME, Baker F, Donald AM. Use of environmental scanning electron microscopy to image the spore adhesive of the marine alga Enteromorpha in its natural hydrated state. Colloids Surf B: Biointerfaces. 2003;27(4):315-321.

Narra K, Dhanalekshmi U, Rangaraj G, et al. Effect of Formulation Variables on Rifampicin Loaded Alginate Beads. Iran J Pharma Res. 2012;11(3):715-721.

Mitropoulou G, Nedovic V, Goyal A, Kourkoutas Y. Immobilization Technologies in Probiotic Food Production. J Nutr Metabol. 2013;2013:716861.

Mokarram RR, Mortazavi SA, Najafi MBH, Shahidi F. The influence of multi stage alginate coating on survivability of potential probiotic bacteria in simulated gastric and intestinal juice. Food Res Int. 2009;42(8):1040-1045.

Mohan A, Rajendran SRCK, He QS, Bazinet L, Udenigwe CC. Encapsulation of food protein hydrolysates and peptides: a review. RSC Adv. 2015;5(97):79270-79278.

Chen CC, Chen ST, Hsieh JF. Proteomic analysis of polysaccharide-milk protein interactions induced by chitosan. Molecules. 2015;20(5): 7737-7749.

Heidebach T, Först P, Kulozik U. Microencapsulation of probiotic cells by means of rennet-gelation of milk proteins. Food Hydrocoll. 2009;23(7):1670-1677.

Chen M-Y, Zheng W, Dong Q-Y, Li Z-H, Shi L-E, Tang Z-X. Activity of encapsulated Lactobacillus bulgaricus in alginate-whey protein microspheres. Brazilian Arch Biol Technol. 2014;57:736-741.

Doleyres Y, Fliss I, Lacroix C. Quantitative determination of the spatial distribution of pure- and mixed-strain immobilized cells in gel beads by immunofluorescence. Appl Microbiol Biotechnol. 2002;59(2-3):297-302.

Doleyres Y, Fliss I, Lacroix C. Continuous production of mixed lactic starters containing probiotics using immobilized cell technology. Biotechnol prog. 2004;20(1):145-150.

Harnsilawat T, Pongsawatmanit R, McClements DJ. Characterization of β-lactoglobulin-sodium alginate interactions in aqueous solutions: A calorimetry, light scattering, electrophoretic mobility and solubility study. Food hydrocoll. 2006;20(5):577-585.

Tadera K, Minami Y, Chohchi M. Interaction between Acidic Polysaccharides and Proteins. Biosci Biotechnol Biochem. 2003;67(8):1840-1843.


Texto completo: PDF (English)

Refbacks



ISSN: 2340-9894


Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.